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Abstract

We propose a process algebra QA, in which it is possible to describe

a queue process. This process models a queue data structure in the same

way as it is possible to model a bag data structure and a stack data struc-

ture using other process algebras. Furthermore we give a proof sketch

that every process in this algebra is branching bisimilar to a regular pro-

cess communicating with this queue. We try to establish a link between

processes in QA and languages generated by queue grammars, but fail to

map either of those to the other, conjecturing that no algebraic operator

can exist which directly models the class of grammars that use a queue.

Keywords: process algebra, automata theory, queue data structure,

queue automata, Chomsky hierarchy

1 Introduction

In the field of automata theory, different classes of languages are studied which
are generated by communication between a finite automaton and some data
structure. For example, a finite automaton communicating with a tape is known
as a Turing machine, a finite automaton communicating with a stack is known
as a pushdown automaton, and a finite automaton communicating with a bag
(or multiset) is known as a parallel pushdown automaton [16].

In the field of process algebra, different classes of processes are studied which
are generated by studying different combinations of operators in the algebra.
The minimal algebra is often taken to consist of action prefix, alternative compo-
sition, and a zero and unit element for alternative composition. Then, sequential
process algebra is the minimal algebra extended with sequential composition,
basic parallel process algebra is the minimal algebra extended with parallel com-
position, and communicating process algebra is the minimal algebra extended
with parallel composition and the possibility to model synchronization. We
build upon the minimal and communicating process algebras in this paper.

In linking the field of process algebra and that of automata theory, several
results have recently been established. For example, it has been shown that a
stack can be modeled as a finite recursive specification in the sequential process
algebra, and that every finite recursive specification in the sequential process
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algebra is contrasimilar to a finite recursive specification over basic process alge-
bra (a regular process) communicating with a stack (i.e. a pushdown process) [6].
Similarly, a bag or multiset can be modeled as a finite recursive specification in
basic parallel process algebra, and every finite recursive specification in the basic
parallel process algebra is branching bisimilar to regular process communicating
with a bag [7].

In this report, inspired by these results, we research the question which pro-
cess algebraic operator would yield a similar connection with the queue data
structure. It is a well-known result by Post [17] that a finite automaton com-
municating with a queue can produce the same languages as a Turing Machine,
and we are curious to see what the expressiveness would be of an operator that
is able to model a queue. From a result by Bergstra and Tiuryn [9] we know that
the standard operators of process algebra (alternative-, sequential-, and parallel
composition without synchronization) are not sufficient to model a queue, but
this paper also provides a unary operator that exploits additional structure on
the set of actions that is able to model a queue. Taking this unary operator as a
starting point, we construct a binary operator called the queue merge operator,
that produces a queue in a similar way as that stack and bag were produced
in [7, 6]. Furthermore, we prove that every basic queueing process is branch-
ing bisimilar to some regular process communicating with a queue. Although
not very surprising, this result does not trivially follow from Post’s result, since
branching bisimulation is a stronger equivalence than language equivalence.

Sadly, after establishing this link between the queue merge operator and
a queue automaton, the analogy seems to end. In particular, when studying
languages generated by data structures, it is also common to study grammars
that make use of a data structure (see for example [6] and [7]). The link between
a grammar that uses a stack (a context free grammar) and sequential process
algebra, is quite trivial (see [6]), and the same goes for the link between a
grammar that uses a bag and basic parallel process algebra (see [7]). However,
the link between a grammar that uses a queue [11] and basic queueing processes,
does not exist. We have examples of a process that can be described using the
queue merge operator that cannot be described using the queue grammar, and
we have a conjecture that the catastrophe process, which is describable as a
queue grammar, cannot be described using a basic queueing process.

The structure of this report is as follows: we start with a formal introduction
to regular processes and communicating processes in Section 2, and continue in
Section 3 by adding the queue merge operator. In Section 4 we show that the
queue merge is able to model a queue using the same basic formula that was
used to model a stack in [6] and a bag in [7]. In Section 5 we give a sketch of the
proof that every basic queueing process is branching bisimilar to some regular
process communicating with a queue. In Section 6 we discuss the creation of
languages using grammars and we give the counterexamples that show that the
link between the queue merge and the queue grammar is broken. Finally, in
Section 7 we conclude this report and give recommendations for future work.

2 Regular and Communicating Processes

Before we introduce basic queueing processes we first consider the notion of a
regular process and its relation to regular language theory. We start with the
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definition of transition systems from process theory. A finite transition system
can be thought of as a non-deterministic finite automaton. In order to have
a complete analogy, the transition systems we consider have a subset of states
marked as a final state.

Definition 1. A transition system T is a quintuple (S,A,→, ↑, ↓) where:

• S is a set of states,

• A is an alphabet,

• →⊆ S ×A× S is the set of transitions or steps,

• ↑∈ S is the initial state,

• ↓⊆ S is a set of final states.

For a transition (s, a, t) ∈ → we write s
a

−→ t. For a final state s ∈↓ we
write s↓. A transition system is called finite when both sets S and A are finite.

In automata theory a regular language can be given by a right-linear gram-
mar. Similarly, a grammar in process theory is called a recursive specification;
a set of recursive equations over a set variables V . Then a right-linear gram-
mar coincides with a recursive specification over a finite set of variables in the
Minimal Algebra MA. In this paper we adopt the process algebra notation as
in [2, 5].

Definition 2. The signature of Minimal Algebra MA is as follows:

• The constant 0; denoting inaction, a deadlock state; other names are δ or
stop.

• The constant 1; termination, a final state; other names are ε, skip or the
empty process.

• For each element of the alphabet A there is a unary operator a. called
action-prefix; a term a.x will execute the elementary action a and then
proceed as x.

• The binary operator + called alternative composition; a term x + y will
either execute x or execute y, a choice will be made between the alterna-
tives.

The constants 0 and 1 are needed to denote transition systems with a single
state and no transitions. The constant 0 denotes a single state that is not a
final state, while 1 denotes a single state that is also a final state.

Definition 3. Let V be a set of variables. A recursive specification over V
with initial variable S, with S ∈ V is a set of equations of the form X = tX ,
exactly one for each X ∈ V, where each right-hand side tX is a term over some
signature, possibly containing elements of V. A recursive specification is called
finite if V has finitely many elements.

Definition 4. A recursive specification is called guarded if each equation is
guarded. An equation is guarded if each occurrence of a variable V ∈ V in
tX is guarded. A variable V ∈ V is guarded if it occurs as the operand of a
action-prefix operator. E.g. in a.X, where a ∈ A and X ∈ V, X is guarded.
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A finite guarded recursive specification over MA can be seen as a right-
linear grammar. Therefore each finite transition system corresponds directly
to a finite recursive specification over MA, using a variable for every state. To
go from a term over MA to a transition system, we use structural operational
semantics [1], with rules given in Table 1.

Table 1: Operational rules for MA and recursion (a ∈ A, X ∈ V)

1
1↓

2
a.x

a
−→ x

3
x

a
−→ x′

x + y
a

−→ x′
4

y
a

−→ y′

x + y
a

−→ y′
5

x↓

x + y↓
6

y↓

x + y↓

7
tX

a
−→ x X = tX

X
a

−→ x
8

tX↓ X = tX
X↓

Because we model in this paper the interaction between a regular process and
a queue, we need to introduce communication by synchronization. Therefore we
introduce the Communication Algebra CA, which extends MA with the parallel
composition operator ‖, and has a notion of communication. From the viewpoint
of a process there are two types of communication, a receive action and a send
action; a receiving action is denoted as ?d and a sending action as !d. In this
paper we use a particular communication function, that only synchronizes !d
and ?d (for the same d ∈ D). The result of such synchronization is denoted as
?!d. CA introduces two new operators: the encapsulation operator ∂∗( ), which
blocks actions !d and ?d, and the abstraction operator τ∗( ), which turns all
actions ?!d into the internal action τ . The operational rules for CA are given in
Table 2.

A finite axiomatization of transition systems of CA modulo rooted branching
bisimulation uses the auxiliary operators T and | [10, 15]. The axioms can
be found in Table 3, for the explanation we refer to the literature [5]. The given
equational theory is sound and ground-complete for the model of transition
systems modulo rooted branching bisimulation [14].

Now that we have introduced MA and CA, it is possible to define the queue-
ing algebra QA, which is built upon MA; this is described in the next section.

3 Basic Queueing Processes

In [6] it was established that context-free processes can be given by guarded re-
cursive specifications over the Sequential Algebra SA, which extends MA with
the sequential composition operator · . In [7] parallel processes were con-
structed, a superset of the basic parallel processes, by guarded recursive spec-
ifications over the Communication Algebra CA, which extends MA with the
parallel composition operator || . Within SA the stack was considered the
most basic sequential process, within CA the corresponding data structure is
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Table 2: Operational rules for CA (a ∈ A)

9
x

a
−→ x′

x ‖ y
a

−→ x′ ‖ y
10

y
a

−→ y′

x ‖ y
a

−→ x ‖ y′
11

x↓ y↓

x ‖ y↓

12
x

?d
−→ x′ y

!d
−→ y′

x ‖ y
?!d
−→ x′ ‖ y′

13
x

!d
−→ x′ y

?d
−→ y′

x ‖ y
?!d

−→ x′ ‖ y′

14
x

a
−→ x′ a 6= !d, ?d

∂∗(x)
a

−→ ∂∗(x
′)

15
x↓

∂∗(x)↓

16
x

?!d
−→ x′

τ∗(x)
τ

−→ τ∗(x
′)

17
x

a
−→ x′ a 6= ?!d

τ∗(x)
τ

−→ τ∗(x
′)

18
x↓

τ∗(x)↓

Table 3: Equational theory of CA (a ∈ A)

x ‖ y = x T y + y T x + x | y

0 T x = 0

1 T x = 0

a.x T y = a.(x ‖ y)
(x + y) T z = x T z + y T z
0 | x = 0

(x + y) | z = x | z + y | z
1 | 1 = 1

a.x | 1 = 0

!d.x | ?d.y = ?!d.(x ‖ y)
a.x | b.y = 0 if {a, b} 6= {!d, ?d}

∂∗(0) = 0

∂∗(1) = 1

∂∗(?d.x) = ∂∗(?d) = 0

∂∗(a.x) = a.∂∗(x) if a /∈ {!d, ?d}
∂∗(x + y) = ∂∗(x) + ∂∗(y)

a.(τ.(x + y) + x) = a.(x + y)

x | y = y | x
x ‖ 1 = 1

1 | x + 1 = 1

(x ‖ y) ‖ z = x ‖ (y ‖ z)
(x | y) | z = x | (y | z)
(x T y) T z = x T (y ‖ z)
(x | y) T z = x | (y T z)
x T τ.y = x T y
x | τ.y = 0

τ∗(0) = 0

τ∗(1) = 1

τ∗(?!d.x) = τ.τ∗(x)
τ∗(a.x) = a.τ∗(x)
τ∗(x + y) = τ∗(x) = τ∗(y)

the bag. Now we will extend MA with a new operator, the queue merge operator
�, and call the resulting algebra the Queueing Algebra (QA). This new oper-
ator was inspired by the queue operator as it was introduced in [9]. We define
the Basic Queueing Processes (BQP) as the bisimulation equivalence class of
the transition system generated by a finite guarded recursive specification over
QA.

In order to construct a transition system from a term over process algebra
QA, we need to know the operational semantics for QA. To do this, we first
need two predicates, functions from processes to the Booleans, ¬! : P → B and
¬? : P → B. These predicates check if there is no send, or respectively no
receive action enabled in the given process. We call these predicates no-send
and no-receive.
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Definition 5. We define ¬! and ¬? as follows:

¬?(0) = True
¬?(1) = True
¬?(x + y) = ¬?(x) ∧ ¬?(y)
¬?(?a.p) = False
¬?(!a.p) = True

¬!(0) = True
¬!(1) = True
¬!(x + y) = ¬?(x) ∧ ¬?(y)
¬!(?a.p) = True
¬!(!a.p) = False

Now we can define the SOS rules as follows. Consider the term x � y.
Whenever x can do a receive step to x′, x � y can do a receive step to x′ � y.
The dual holds for a send step on y. The left term of a queue merge (x in
the example) can only do a send action whenever the right operand (y) cannot.
Again the dual holds for the right operand with the receive action. Finally, the
term x � y can only terminate if both the terms x and y can terminate. This
behaviour is formalized using structural operational semantics in Table 4. It
follows from the shape of the elements in these SOS rules that bisimulation is a
congruence for the operators in QA (see [13]).

Table 4: Structural Operational Semantics rules for QA (?a, !a ∈ A)

19
x

?a
−→ x′

x � y
?a
−→ x′ � y

20
y

!a
−→ y′

x � y
!a
−→ x � y′

21
x

!a
−→ x′ ¬!(y)

x � y
!a
−→ x′ � y

22
y

?a
−→ y′ ¬?(x)

x � y
?a
−→ x � y′

23
x↓ y↓

x � y↓

We need to extend QA with additional operators to be able to obtain a finite
axiomatization. The operators to be added are the left queue merge: �\ and
the right queue merge: /. These were chosen in analogy to the left and right
merge from the decomposition of the parallel composition operator. These two
operators require additional SOS rules, which are presented in Table 5.

The left queue merge operator expresses that only an action at the left
operand may be performed. This can either be a receive or a send action,
depending on the right operand. The dual holds for the right queue merge.
Termination is the same for the left- and right-queue merge; both x �\ y and
x / y can terminate if x and y can terminate. Note again that the shape of
these SOS rules imply congruence (again, see [13]).

Axioms Our finite axiomatization of QA, using the auxiliary operators �\ and
/, can be found in Table 6. Axiom MQ expresses that the queue merge of x
and y is syntactically equivalent to the alternative composition of the left queue
merge of x and y and the right queue merge of x and y. Axioms with the LMQ-
prefix concern terms with the left queue merge operator. Dual axioms exist
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Table 5: Additional SOS rules for the axiomatization of QA (?a, !a ∈ A)

24
x

?a
−→ x′

x �\ y
?a
−→ x′ � y

25
y

!a
−→ y′

x /y
!a
−→ x � y′

26
x

!a
−→ x′ ¬!(y)

x �\ y
!a
−→ x′ � y

27
y

?a
−→ y′ ¬?(x)

x /y
?a
−→ x � y′

28
x↓ y↓

x �\ y↓
29

x↓ y↓

x /y↓

for the right queue merge; these are prefixed with RMQ. The given theory is
a sound and ground-complete axiomatization of the model of transition system
modulo bisimulation [5, 8]. Proofs of the soundness of a number of axioms is
included in Appendix A.

Table 6: Equational theory of QA

MQ x � y = x �\ y + x / y

LMQ1 0 �\ x = 0

LMQ2 1 �\ 0 = 0

LMQ3 1 �\ 1 = 1

LMQ4 1 �\ (x + y) = 1 �\ x + 1 �\ y
LMQ5 1 �\ α.x = 0 α ∈ {?a, !a}
LMQ6 ?a.x �\ y = ?a.(x � y)
LMQ7 !a.x �\ (!b.y + z) = 0

LMQ8 ¬!(y) ⇒ !a.x �\ y = !a.(x � y)
LMQ9 (x + y) �\ z = x �\ z + y �\ z

RMQ1 x /0 = 0

RMQ2 0 /1 = 0

RMQ3 1 /1 = 1

RMQ4 (x + y) /1 = x /1 + y /1

RMQ5 α.x /1 = 0 α ∈ {?a, !a}
RMQ6 x / !a.y = !a.(x � y)
RMQ7 (?a.x + y) / ?b.z = 0

RMQ8 ¬?(x) ⇒ x / ?a.y = ?a.(x � y)
RMQ9 x / (y + z) = x / y + x / z

SQ1 x �1 = x
SQ2 1 � x = x
SQ3 (x � y) � z = x � (y � z)
SQ4 (x �\ y) �\ z = x �\ (y � z)
SQ5 x / (y / z) = (x � y) / z

Axiom LMQ1 expresses that 0 is a left zero element for the left queue merge.
When 1 is the left operand of the left queue merge, we have four different cases
depending on the right operand. First, when the right operand is a 0 or α.x
(where α can be a ?a or a !a action), we end up in deadlock. If the right operand
is 1, the term is equivalent with 1 and if the right operand is x + y, then it is
equivalent with the alternative composition of 1 �\ x and 1 �\ y. Axiom LMQ6
expresses that we can always do a receive action in the left operand, followed by
the queue merge of the remaining actions of the left and right operand. Axioms
LMQ7 and LMQ8 express that we are only allowed to do a send action in the
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left operand, if the right operand cannot do a send action. Finally, axiom LMQ9
expresses that the left queue merge distributes over the alternative composition
from the right.

Furthermore we have some general axioms prefixed with SQ. The first two,
SQ1 and SQ2, express that 1 is a unit element of the queue merge. Axiom
SQ3 expresses that the queue merge operator is associative. Finally, axiom SQ4
expresses that the left queue merge of a left queue merge is equivalent with the
left queue merge of the leftmost component and the queue merge of the middle
and last component. Axiom SQ5 is the dual of SQ4 for the right queue merge.

4 Modeling a Queue

Now that we have defined the operational semantics and equational theory for
the queue merge operator, we can use this to construct a guarded recursive
specification for the queue; recall the definition of guardedness (Definition 4).
The reason we restrict ourselves to guarded recursive specifications is that each
guarded recursive specification has a unique solution in the transition system
model [10, 8].

Theorem 4.1. It is possible using the axioms to bring any guarded recursive
specification into Greibach Normal Form [4], that is, for every variable X ∈ V
into the following form:

X =
∑

i∈IX

ai.ξi (+1) (1)

Here IX is a finite index set, and ξi is defined as the queue merge over a sequence
of variables, i.e., Xi1 �Xi2 � . . . �Xin

.

This way, each right hand side of an equation can be written as a sum over
a number of terms indexed by a finite set IX . The empty sum is denoted by 0,
and each term is of the form 1 or ai.ξi. Note that action ai can either be a
send or a receive action. For a recursive specification in Greibach Normal Form,
every state of the transition system is given by a sequence of variables. A proof
of Theorem 4.1 is included in Appendix B.

An example process we have investigated is a queue. Suppose we have a
finite data set D, we define the following actions A, for each d ∈ D:

• ?d: the receive action, i.e. put datum d on the back of the queue.

• !d: the send action, i.e. remove datum d from the front of the queue.

In line with the previous papers on the bag and the stack [7, 6], we define a
queue by the following recursive specification:

Q =
∑

d∈D

?d.(Q � !d.1) + 1 (2)

In order to see that the above process Q indeed defines a queue, we define
a process Qσ denoting a queue where σ ∈ D∗ denotes the content of the queue.
We define the empty queue as follows.

Qε =
∑

d∈D

?d.Qd (3)
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The above equation models a queue with no contents that can only receive
a datum d resulting in a queue with only datum d on it. The non-empty queue,
with a datum e on front followed by other data ξ, can be defined as follows.

Qeξ =
∑

d∈D

?d.Qeξd + !e.Qξ (4)

This equation models the choice between receiving a new datum d, whereby
it is added at the back of the queue, or sending the front element from the
queue. When the front element is sent, it is removed from the queue, leaving
the other data on it without changing the order of the elements. We use RSP
to prove that our definition of a queue matches the definition of a queue with
data as given above. This proof is included in Appendix C.

Forgetful queue A process in the queueing algebra QA can only terminate
if all its components can terminate. In our definition of a queue, given by the
process Q in Equation 2 above, this is not possible. Therefore we want to adapt
the definition of the queue, such that a component has a termination option if
and only if the corresponding variable has a termination option. In order to do
that, we introduce the concept of transparent variables.

We now restrict ourselves to a setting where any data item is a recursive
specification variable. We call a variable transparent1 if its equation has a 1-
summand. Furthermore, we use V+1 to denote the set of transparent variables
of a basic queueing process P . Similarly we denote the set of all variables of
P with a summand with a receive, respectively send, action with V+? and V+!.
Note that a process variable can have both send and receive actions, so V+? and
V+! do not have to be disjoint. Finally, we have a set of actions A = A? ∪ A!,
with A?∩A! = ∅, where A? is the set of receive actions and A! is the set of send
actions.

Using this notion of transparent variables we can define the forgetful queue,
which can terminate if and only if all variables on the queue can terminate. The
forgetful queue is given by the following recursive specification, where we use
subscript notation to denote when a certain variable is forgetful. We use the
notation (+1)X∈V+1 to denote that if a variable X is in the set of transparent
variables V+1, then it has a +1 summand.

Q =
∑

X∈D

?X.(Q � (!X.1 (+1)X∈V+1) + 1 (5)

This forgetful queue can then be used, in parallel with a regular process, to
bisimulate any other process in QA. We give a proof sketch of this in the next
section.

5 Queue Automaton Proof Sketch

In this section we provide the sketch of a proof that every process in BQP is
branching bisimilar to some regular process communicating with a queue. The
proof is important to show that there exists for every term over QA a queue

1The concepts of transparency and forgetfulness are derived from their counterparts in the
bag [7] and stack processes [6].
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automaton which accepts it. So, for any process P in BQP we want to find a
regular process R such that

P = τ∗(∂∗(R ‖ Qσ)) (6)

where Qσ is a state of process Q (as defined by Equation 5 in Section 4).
Without loss of generality we assume that P is given in Greibach Normal Form
(see Theorem 4.1), and so has a structure as defined in Equation 1. For the
queue process, we take the forgetful queue as introduced in the previous section.
This leads to the following theorem:

Theorem 5.1. For every process P in BQP there exists a process R given by
a finite guarded recursive specification over MA such that P = [R ‖ Qσ]∗ for
some state Qσ of the queue. From here on, [p]∗ is used as shorthand notation
for τ∗(∂∗(p)).

Proof sketch In the following text we introduce a control process which sim-
ulates process P . This process works in a similar fashion as the control processes
in [7, 6]. Our control process works by repeatedly taking a data item from the
queue and putting it back, while offering some options. It finds the data item
corresponding to the first (respectively last) process variable with receive (re-
spectively send) actions on the queue and offers those receive (or send) actions
as a choice, or it can rotate the queue back to an initial state. The result of
this is that the control process does not make a choice itself, and is always able
to return to a previous state. In this way, any state of [R ‖ Qσ]∗ can also be
simulated by P .

We first introduce a number of equations used to obtain the desired pro-
cess R, with an intuition as to the correctness of these equations. A formal
proof of one of the equations is given as an example further on; proofs of the
others are omitted.

After showing how R is obtained we show how lists of elements are added
to the queue using Push and the FFWD equation which is key to rotating the
queue. Then the Ctrl process is introduced and after that the equations First
and Last which are used by the control process. Lastly, the correctness of the
FFWD process is proven.

The data-set D we use for our solution – i.e., the data items to be put
on the queue – are the set of variables V of P , supplemented with the special
markers $, γ and λ. These markers are not process variables, but are elements of
the dataset used for bookkeeping purposes. To allow correct termination these
markers are all defined to be in V+1. Their function is explained further on.

Let E be a finite recursive specification of P given in Greibach Normal Form,
so that for every variable X ∈ V of the specification E, IX being its index set,
X is defined as follows:

X =
∑

i∈IX

ai.ξi (+1)X∈V+1 (7)

Here the right-hand side of the equation consists of a number of summands,
each of which has an index i from the (finite) index set IX , and corresponding
actions ai – which are either receive actions ?ai or send actions !ai – and ξi, a
queue merge composition of process variables s.t. ξi = Xi1 � Xi2 � . . . � Xin

.
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Now let F be a finite recursive specification. The way F is modeled, with
a central Ctrl equation and a number of Push equations, is based on similar
notions as present in [7, 6].

If X is a process variable in E, then we want to mimic execution of X by
two variables in F called X̂? and X̂!, where [X̂? + X̂! ‖ Q$]∗ is bisimilar to X .
These variables are defined as follows:

X̂? =

(
∑

i∈IX∧ai∈A?

ai.Push(ξi)

)
+ Push(X) (8)

X̂! =

(
∑

i∈IX∧ai∈A!

ai.Push(ξi)

)
+ Push(X) (9)

If and only if it is possible to choose to execute action ?ai of X in E, then
similarly it is possible to execute action ?ai of X̂? in F . Process E is then in
a state where it should execute ξi. In the same way, it is possible to execute
!ai of X̂! if and only if it is possible to execute !ai of X in E. Executing ξi is
mimicked in F by pushing all variables in ξi onto the queue. Later on they can
be read one by one and executed. Pushing them onto the queue is modeled by
the Push equations (see Equations 10 and 11); as can be seen from Equations 8
and 9, it is also possible in F to not execute the desired action, but instead
push X itself onto the queue. This is to make sure that R is not the process
that initiates an action; since all internal actions (i.e., communications with the
queue) will become τ -actions when taken through the encapsulation function τ∗,
it is important that any choice made by taking such an action can be reverted,
so that the original process X is not “forced” to take that action as well.

The Push equations work in the following way:

Push(∅) = FFWD (10)

Push(Xξ) = !X.Push(ξ) (11)

Here X is the variable that is currently at the beginning of the original sequence
ξi and ξ is the remaining sequence after removing X from it.

After all variables have been pushed, the FFWD equation comes into play.
The reader will have noticed that we have started out with X̂? + X̂! in parallel
with Q$, a queue containing only the item $. This symbol is the so-called
end-of-queue marker, which is used to signify the end of the queue in its “un-
rotated” state, and it is always present, even if the queue is empty – that is why
we started with only $ on the queue. We have not rotated the queue yet, but
this will happen in other equations, and we need a way to keep track of what
the original configuration was; because as we do not want FFWD to make the
actual choice of performing an action or not, it should always be possible to
return to the previous state. The marker $ is used to know when to terminate
the FFWD process.

Now the function of the FFWD equation is to rotate the queue, by iteratively
reading and writing back data elements, so that when it is finished, the end-
of-queue marker is actually at the end of the queue. Without this marker the
FFWD process would not be able to determine when to stop. Rotating is done
as follows:

FFWD =

(
∑

X∈V

?X.!X.FFWD

)
+ ?$.!$.Ctrl (12)

11



As can be seen from the FFWD definition, after it is done rotating the
queue, the Ctrl equation is entered. Note that the bisimulation of X with
[X̂? + X̂! ‖ Q$]∗ can still execute ξi in F . Since after rotating, the variables in
ξi have been pushed onto the queue. The correct options from ξi to offered are
simulated by First, Last and 1.

Ctrl = First + Last + 1 (13)

First of all, in E, it is possible for ξi to terminate if all its queue components
can terminate. Now in F , Ctrl can always terminate, and the queue which is
parallel to it can terminate if and only if all the items on the queue have a
1-summand, which is true if their actual specifications have a 1-summand; so
both can terminate under the same conditions.

Now in ξi = Xi1 � Xi2 � . . . � Xin
, only the leftmost process variable

with a receive action (the Xij
for which Xij

∈ V+? and ∀k<jXik
6∈ V+?) and

the rightmost variable with a send action (the Xij
for which Xij

∈ V+! and
∀k>jXik

6∈ V+!) are allowed to perform an action. This behaviour is mimicked
respectively by First, which only allows the first process variable with a receive
action to be executed, and Last, which only allows the last process variable with
a send action to be executed.

Equation First works by rotating the queue until the first variable with a
receive action is found. This is done by repeatedly reading an element X off the
queue, and then immediately writing it back to the queue (if it does not have a
receive action) or removing it from the queue and executing the corresponding

X̂?-process for the found variable X (if it does have a receive action). If this

happens, we are again in the same state as when entering the X̂?-process before,
except that the queue can now be in an arbitrary rotated state, with possibly a
number of other variables still on the queue.

It is also possible in First to read the end-of-queue marker; this means that
no receive actions have been found, so the process returns to Ctrl, in which case
it is in the same state as it was before having entered First.

First =

(
∑

X∈V

?X.((X̂?)X∈V+? + (!X.First)X /∈V+?)

)
+?$.!$.Ctrl (14)

The function of the Last equations is analogous to that of the First equation,
except that it should find and execute the last send action instead of the first
receive action. The way it works is more complex, because rotation can only
be performed in one direction, so it has to rotate the queue several times in
order to find the last send action. It does so using two helper markers; the goto
marker γ and the last marker λ, and two additional equations Lastγ and Lastλ.
For these markers it does not matter whether they are in V+1 or not, since they
are on the queue only when F is in the Last equations, and these do not provide
a termination option; so they are chosen to be in V+1 for consistency with the
end-of-queue marker.

In finding the last variable with a send action, we alternate between the
Last equation, which finds the next send action and writes the goto marker γ
in front of it, and the Lastγ equation, which rotates to the previously written
γ marker and changes it into the last marker λ. The Lastγ process also erases
any previously found λ markers, since if we have written a new γ marker, then

12



clearly the λ marker did not actually mark the last variable with a send action.
If in trying to find the next send action (in the Last equation), we encounter the
end-of-queue marker $, then the previously written λ marker did actually denote
the last process with a send action, so we enter the Lastλ process, which rotates
to the one remaining λ marker, removes it and executes the corresponding X̂!

process, in the same way as was done with X̂? in First. If no λ was found in
Lastλ, then there is no variable with a send action, so we return to Ctrl.

Last =

(
∑

X∈V

?X.((!γ.!X.Lastγ)X∈V+! + (!X.Last)X /∈V+!)

)

+ ?$.!$.Lastλ (15)

Lastγ =


 ∑

X∈V∪{$}

?X.!X.Lastγ


+ ?λ.Lastγ

+

(
?γ.!λ.

∑

X∈V

?X.!X.Last

)
(16)

Lastλ =

(
∑

X∈V

?X.!X.Lastλ

)
+

(
?λ.

∑

X∈V

?X.X̂!

)
+ ?$.!$.Ctrl (17)

Once an action has been chosen from First or Last, X̂? and X̂! mimic the
behaviour of X by pushing the appropriate process variables ξi on the queue (or
pushing no variables in case a terminating queued component has been chosen).

This concludes our sketch of the equations and workings of a regular process
communicating with a queue, that can mimic an arbitrary process in QA, and
thus our sketch of the proof that such a process exists.

The way this process works is sketched in Figure 1. Beginning with the
process Ctrl ‖ Qξ (the Ctrl process parallel to the queue in some state ξ) the
process can enter either First or Last – given that there are both receive- and
send-actions enabled. In First it can perform a receive action ?ai (or any other
enabled receive action), push the corresponding row of symbols ξi onto the
queue, and fast forward to the state Ctrl ‖ Qξ′ ; in Last it can perform a send
action !aj (or any other enabled send action), push the corresponding symbols
ξj and fast forward to Ctrl ‖ Qξ′′ . In both the First and the Last case, it is
possible to not make a choice by performing a FFWD instead and returning to
the original Ctrl ‖ Qξ state.

To prove our main theorem, i.e. P = [R ‖ Qσ]∗, we need to prove that all
processes work as described. Thus we need to prove that FFWD, First, Last,
Lastγ , Lastλ and Push work as described above. For example, for FFWD we
need to prove that it converges to Ctrl ‖ Qξ, where the end-of-queue marker is
at the back of the queue, given any state of the queue. For First we need to
prove that it gives the choice between executing the receive actions of the first
process variable with receive actions, or that is returns to Ctrl. Furthermore it
should be proven for First that when there is no process variable with a send
action on the queue, that it returns to Ctrl, with the queue in the correct state.
Likewise, lemmas need to be added for Last and Push.

As an example, we prove here the correctness of FFWD. There are several
reasons why this process was chosen. Firstly the proof for this process is com-
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Ctrl ‖ Qξ

. . .
. . .

Ctrl ‖ Qξ′

F̃irstF̃FWD

?ai

˜Push(ξi)

F̃FWD

. . .
. . .

Ctrl ‖ Qξ′′

L̃ast

F̃FWD!aj
˜Push(ξj)F̃FWD

Figure 1: Transition system sketch of the workings of the Ctrl process in parallel

with a queue. By ˜〈equation〉 we indicate the τ -steps generated by that equation,
up to the point where another process equation is entered.

pact. Also it illustrates how the other proofs can be done. Lastly, the process
creates a τ -loop which, combined with the form of the equation, allows us to use
KFAR [3] to show that the process does not make a choice. This also applies to
the other proofs. Note that this is exactly what we want FFWD to do, rotating
the contents of the queue without making a choice, which means that we can
always return to a previous state as long as no explicit action is taken.

Lemma 5.2. FFWD works such that it converges to Ctrl where the end-of-
queue marker is at the back of the queue, given any state of the queue: [FFWD ‖
Qξ$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′ξ$]∗

Proof. This lemma can be proven by induction on the number of elements before
the end-of-queue marker $. This works as follows.

Base case Suppose ξ = ε, hence there are no elements before the end-of-queue
marker $. So we want to prove that: [FFWD ‖ Q$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′$]∗.

[FFWD ‖ Q$ξ′ ]∗

= {definition FFWD, Q$ξ′}

[(
∑

X∈V

?X.!X.FFWD)+?$.!$.Ctrl ‖
∑

d∈D

?d.Q$ξ′d + !$.Qξ′ ]∗

= {$ /∈ V , ?d can not communicate}

τ.[!$.Ctrl ‖ Qξ′ ]∗

= {definition Qε, communication}

τ.τ.[Ctrl ‖ Qξ′$]∗

= {axiom}

τ.[Ctrl ‖ Qξ′$]∗

14



Hence, for ξ = ε it holds that [FFWD ‖ Q$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′$]∗.

Step Now suppose ξ = yξ′′, then we want to prove that the following holds:
[FFWD ‖ Qyξ′′$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′yξ′′$]∗. We can do this as follows.

[FFWD ‖ Qyξ′′$ξ′ ]∗

= {definition FFWD, Qyξ′′$ξ′}

[(
∑

X∈V

?X.!X.FFWD)+?$.!$.Ctrl ‖
∑

d∈D

?d.Qyξ′′$ξ′d + !y.Qξ′′$ξ′ ]∗

= {communication}

τ.[!y.FFWD ‖ Qξ′′$ξ′ ]∗

= {definition Qξ′′$ξ′ , communication}

τ.τ.[FFWD ‖ Qξ′′$ξ′y]∗

= {Induction Hypothesis}

τ.[FFWD ‖ Q$ξ′yξ′′ ]∗

= {from the base case: [FFWD ‖ Q$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′$]∗}

τ.[Ctrl ‖ Qξ′yξ′′$]∗

Hence we have proven that: [FFWD ‖ Qyξ′′$ξ′ ]∗ = τ.[Ctrl ‖ Qξ′yξ′′$]∗. This
completes the proof of the lemma.

The correctness of the other equations X̂?, X̂!, Push, Ctrl, First, Last, Lastγ

and Lastλ, and their relation to the original process P , can be proven in a
similar fashion.

6 Discussion

The Queue Algebra as presented in this paper is quite powerful, however it
does not completely capture the queue nature which we originally set out to
capture. To show this we compare the languages which can be generated by
our operator to the queue languages. These queue languages are generated by
queue grammars, as defined in [11].

Example 6.1 (AntiDyck). The AntiDyck language (or FIFO) language is
the language where elements which are read first are output first. This is the
language most closely related to the queue nature.

The following equation expresses AntiDyck in QA.

X = ?a.(X � !a.1) + ?b.(X � !b.1) + 1

Example 6.2 (Anagram). Also the language of Anagrams, any permutation
of anbn, can be expressed as follows:

X = ?a.(X � !b.1) + !b.(?a.1 �X) + 1
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Example 6.3 (Palindrome). In [12] it is proven that the language of palin-
drome strings uuR is not a queue language. However, the palindrome language
can easily be represented in QA:

X = ?a.(X � ?a.1) + ?b.(X � ?b.1) + 1

Since we can express a palindrome language, QA does not capture exactly
the class of queue languages as defined in [11], but also expresses languages not
contained therein.

In the previous example it was shown that QA is in some regards more
powerful than queue languages. However, it remains to be seen whether the
queue languages are strictly contained within QA. We check this by trying to
express the queue language Castastrophe in QA.

Example 6.4 (Catastrophe). The queue language Catastrophe is defined as
follows: 〈an0ban1 . . . bankba∗|nh ≤ 2nh−1 for 1 ≤ h ≤ k, n0 = 1, k ≥ 1〉.

We conjecture that the catastrophe language cannot be generated by QA,
hence not all queue languages are expressible in QA. This is due to the locality
of the queue merge operator which cannot add to the end of a queue merge
composition while removing from the beginning: If we have a queue merge
composition X1 � . . . � Xn, where Xi (for 1 ≤ i ≤ n) is an arbitrary process,
it is not possible to perform an action that modifies both X1 and Xn. The
AntiDyck language was possible since we could split actions into matching input
and output actions. For Catastrophe we cannot do this because of a required
order on the actions.

Expressivity of QA How does the algebra QA relate to other defined notions
of queueing formalisms? As can be seen from the previous examples, QA has
overlap with the queue languages, but each can express languages not expressible
by the other. This is not what we aimed for, since in the case of the stack and
bag automata, they do represent the same class of languages as the sequential
process algebra and basic parallel process algebra, respectively.

However, QA and the queue languages do share some languages that funda-
mentally have the “queue nature”, such as AntiDyck. This leads us to propose
a new Chomsky hierarchy including BQP as in Figure 2.

7 Concluding Remarks

We created and studied the queue merge operator and found that it is an oper-
ator with interesting properties, but lacking the strong link to queue languages
that we desired.

The question whether there is a binary operator – instead of our queue merge
operator – which has the “queue nature”, or whether it can be proven that such
an operator is non-algebraic and thus does not exist in process algebra, is still
open and left for future work. We conjecture that such an operator does not
exist. We think this is true due to the difference between the local nature of
a binary operator in process algebra, and the global nature of the queue. In
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R

SL

SA

BL BA

QL BQP

Figure 2: Chomsky hierarchy including expressivity of BQP. S and B stand for
stack and bag respectively. A stands for automata, L stands for language. R is
the class of regular languages. QL are the queue languages.

the queue, items are taken from the front and added at the back. It should be
possible with an operator which has a variable number of operands.

A proof sketch was given of how every process in BQP can be expressed as a
regular process communicating with a queue. Similarly it might be interesting
to study how regular process in parallel with a queue can be written as a queue
automaton.

Furthermore we conclude that a regular process communicating with the
queue as defined in this paper is Turing-complete, following from the fact that
this queue actually has queue semantics (see Appendix C), and by result from
Post [17] that a finite automaton communicating with a queue can produce the
same languages as a Turing machine.

Future Work The sequential composition and the parallel composition were
studied in [6, 7]; in this paper we studied the queue merge operator. We can
apply the same idea of studying the link between process algebra and automata
theory to other operators and data structures, such as heaps, tree-like structures,
or probabilistic or timed operators.

As already stated above, either trying to prove that a queue operator is
essentially non-algebraic (which we think is the case), or finding semantics for
an operator which does follow the queue languages, would be very interesting
as well.
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A Soundness Proofs

In this section, we give soundness proofs for the axioms of QA. All axioms have
been verified as sound, but not all of these proofs have been written out here.

A.1 Soundness of Axiom SQ3

Theorem A.1. The queue merge operator � is an associative operator, i.e.
axiom SQ3 is sound according to the semantics of QA.

Proof. In order to prove soundness of (x�y)�z) = x�(y�z), for all processes
x, y and z in BQP, consider the following relation R:

R = {((x � y) � z, x � (y � z)) | x, y, z ∈ P}

Obviously, R is a witness for the axiom. To prove that it is a bisimulation
relation, we consider the following four cases when pRq:

1. pRq and p
a

−→ p′.
In this case, p can only be of the form (x � y) � z, and q can only be of
the form x�(y �z). Regarding a we distinguish the following two cases:

(a) a ∈ A?, so a = ?b for some ?b ∈ A?.

According to the semantics, (x � y) � z
?b
−→ p′ can only originate

from the rules 19 and 22, so we distinguish the following two cases:

i. Rule 19: p′ = p′′ � z and x � y
?b
−→ p′′. This can once again be

done using rules 19 and 22:

A. In the first case, p′′ = x′ � y and x
?b
−→ x′, so (x � y) �

z
?b
−→ (x′ � y) � z if x

?b
−→ x′. This can be simulated by

q = x � (y � z) by applying rule 19, so q
?b
−→ x′ � (y � z).

Then we have ((x′ � y) � z, x′ � (y � z)) ∈ R.

B. In the second case, p′′ = x � y′, y
?b
−→ y′ and ¬?(x), so

(x�y)�z
?b
−→ (x�y′)�z if y

?b
−→ y′ and ¬?(x). This can be

simulated by q = x�(y�z) by first applying rule 22 and then
rule rule 19. Then we have ((x �y′) � z, x� (y′ �z)) ∈ R.

ii. Rule 22: p′ = (x � y) � z′, z
?b
−→ z′, x � ¬?(y). x � ¬?(y)

holds if there is no SOS-rule that can make x � y perform a
?-step, i.e., if rules 19 and 22 are not applicable on x � y; this

is the case when ¬?(x) and ¬?(y). So we have (x � y) � z
?b
−→

(x � y) � z′ if z
?b
−→ z′ and ¬?(x) and ¬?(y). This can be

simulated by q = x �(y �z) by applying rule 22 twice; then we
have ((x � y) � z′, x � (y � z′)) ∈ R.

(b) a ∈ A!, so a = !b for some !b ∈ A!. Now according to the semantics,

(x � y) � z
!b

−→ p′ can only originate from rules 20 and 21, so we
distinguish the following two cases:

i. Rule 20: p′ = (x � y) � z′, and z
!b

−→ z′, so (x � y) � z
!b

−→
(x � y) � z′. This can be simulated by applying rule 20 twice
on q; this yields the relation ((x � y) � z′, x � (y � z′)) ∈ R.
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ii. Rule 21: p′ = p′′ � z and (x � y)
!b

−→ p′′ and ¬!(z). Here rules
20 and 21 are applicable once more:

A. In the first case, p′′ = x � y′ and y
!b

−→ y′, so (x � y) �

z
!b

−→ (x � y′) � z for ¬!(z) and y
!b

−→ y′. This can be
simulated by applying rules 20 and 21 on q, yielding the
relation ((x � y′) � z, x � (y′ � z)) ∈ R.

B. In the second case, p′′ = x′�y, for x
!b

−→ x′ and ¬!(y), so we

have (x�y)�z
!b

−→ (x′�y)�z if x
!b

−→ x′, ¬!(y) and ¬!(z).
This can be simulated by applying rule 21 on q, and observing
(analogous to case 1(a)ii above) that y �¬!(z) iff ¬!(y) and
¬!(z). This results in the relation ((x′�y)�z, x′�(y�z)) ∈
R.

Since A? ⊎ A! = A, these two cases exhaustively enumerate the possible
values for a, and concludes that for (p, q) ∈ R, when p can do a step to p′,
than q can also do a step to q′ with (p′, q′) ∈ R.

2. pRq and q
a

−→ q′.
The case were q can take a step to q′ and is simulated by p, is a dual to
case 1 (where p can take a step to p′ and is simulated by q) above.

3. pRq and p↓.
In this case, p can only be of the form (x�y)�z, and q can only be of the
form x � (y � z). Looking at the semantics, p↓ can only originate from
rule 23, so we have (x �y) �z↓ if x �y↓ and z↓. Again only rule 23 can
be applied on x�y↓, resulting in x↓ and y↓. In total, we get (x�y)�z↓
if x↓ and y↓ and z↓. This can be simulated in q by applying rule 23 to q
twice, so q can terminate when p can terminate.

4. pRq and q↓.
The case where q can terminate is a dual to case 3 above, so p can terminate
when q can terminate.

Summing up, the four requirements for a bisimulation relation are met, so R is
a bisimulation relation. Since ((x � y) � z, x � (y � z)) ∈ R, (x � y) � z is
bisimilar to x � (y � z), so � is associative.

A.2 Soundness of Axiom MQ

Theorem A.2. Axiom MQ is sound according to the semantics QA and the
left and right queue merge.

Proof. In order to prove soundness of x � y = x �\ y + x /y, for all processes
x and y in BQP, consider the following relation R:

R = {(x � y, x �\ y + x / y), (x � y, x � y) | x, y ∈ P}

The first relation pair of R is a witness for the axiom MQ. To prove that R
is a bisimulation relation, we focus on the first pair of R; since in the second
pair x�y is syntactically equivalent to x�y, bisimilarity between these two is
implied. For the first pair, if we have pRq then p = x�y and q = x�\y+x/y,
and we distinguish the following four cases:
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1. pRq and p
a

−→ p′.
Regarding a we distinguish:

(a) a ∈ A?, so a = ?b for some ?b ∈ A?. Now according to the semantics,
rules 19 and 22 are applicable, so we distinguish between these two:

i. By rule 19, x�y
?b
−→ x′�y if x

?b
−→ x′. This can be simulated in

q by applying rules 3 and 24, resulting in x�\y+x/y
?b
−→ x′�y

if x
?b
−→ x′. Then we have (x′ � y, x′ � y) ∈ R.

ii. By rule 22, x � y
?b
−→ x � y′ if y

?b
−→ y′ and ¬?(x). This

can be simulated in q by applying rules 4 and 27, resulting in

x �\ y + x / y
?b
−→ x � y′ if y

?b
−→ y′ and ¬?(x). Then we have

(x � y′, x � y′) ∈ R.

(b) a ∈ A!, so a = !b for some !b ∈ A!. This is a dual to case 1a above,
with send actions and rules instead of receive actions and rules.

2. pRq and q
a

−→ q′.
Since q = x �\ y + x /y, rules 3 and 4 are applicable:

(a) Using rule 3, x�\y+x/y
a

−→ q′ if x�\y
a

−→ q′. Then we distinguish
on a:

i. a = ?b for some ?b ∈ A?. Then only rule 24 is applicable,

so x �\ y
?b
−→ q′ if x

?a
−→ x′ and q′ = x′ � y. Thus, we get

x �\ y + x / y
?b
−→ x′ � y if x

?a
−→ x′. This can be simulated in

p by applying to it rule 19, yielding (x′ � y, x′ � y) ∈ R.

ii. a = !b for some !b ∈ A!. Then only rule 26 is applicable, so

x �\ y
!b

−→ q′ if x
!b

−→ x′, ¬!(y) and q′ = x′ � y. In this way, we

get x �\ y + x /y
!b

−→ x′ � y if x
!b

−→ x′ and ¬!(y). This can be
simulated in p by applying rule 21, again yielding (x′ � y, x′ �
y) ∈ R.

(b) Using rule 4, x �\ y + x /y
a

−→ q′ if x /y
a

−→ q′. This is a dual to
case 2a above, with steps in the right queue merge instead of the left
queue merge.

3. pRq and p↓.
The only applicable rule here is rule 23, so x � y↓ if x↓ and y↓. This can
be simulated in q by applying either rule 5 and then 28 or rule 6 and then
29.

4. pRq and q↓.
The two applicable rules are 5 and 6, so distinguish on those:

(a) With rule 5, x �\ y + x /y↓ if x �\ y↓; with rule 28, this holds if x↓
and y↓. This can be simulated in p by applying rule 23.

(b) With rule 6, x �\ y + x / y↓ if x / y↓; with rule 29, this also holds
if x↓ and y↓, so this can also be simulated in p by applying rule 23.

As can be seen from the above, R is a bisimulation relation. Since (x � y, x �\
y + x /y) ∈ R, x �y is bisimilar to x �\ y + x /y, so axiom MQ is sound.

21



Proof. This is a dual to the proof of the soundness of axiom LMQ9, described
in section A.7 above, only substituting the semantics of the right queue merge
for that of the left queue merge.

A.3 Soundness of Axiom LMQ6

Theorem A.3. Axiom LMQ6 is sound according to the semantics of QA and
the left and right queue merge.

Proof. In order to prove soundness of ?a.x �\ y = ?a.(x � y), for all processes
x, y, z in BQP, consider the following relation R:

R = {(?a.x �\ y, ?a.(x � y)), (x � y, x � y) | x, y, z ∈ P}

R is a witness for axiom LMQ6, so we need to prove that R is a bisimulation
relation. For each p and q in R it holds that if we have pRq then p = ?a.x �\ y
and q = ?a.(x � y). We distinguish here the following four cases:

1. pRq and p
a

−→ p′.
Note that a ∈ A?. Now we can only apply SOS rule 24 on p, resulting

in ?a.x �\ y
?a
−→ x � y. q can simulate this behavior by applying rule 2,

resulting in ?a.(x � y)
?a
−→ x � y. As the result of both equations is the

same, we can apply the induction hypothesis (x�y, x�y) ∈ R, and these
results are bisimilar. As the transitions are equal and the resulting states
are bisimilar, the two states before the transactions must therefore also
be bisimilar.

2. pRq and q
a

−→ q′.
Again note that a ∈ A?, therefore we can only apply rule 2 on q; ?a.(x �

y)
?a
−→ x�y. This is simulated by p using rule 24; ?a.x�\y

?a
−→ x�y. By

the same reasoning as above (x � y, x � y) ∈ R, and thus are bisimilar.

3. pRq and p↓.
We could try to apply 28 on ?a.x�\ y↓, and we would get ?a.x↓ and y↓ as
conditional cases. Clearly there is no semantical rule for ?a.x↓, so we can
not use 28 on p↓. In other words p can not terminate. As we are trying
to prove bisimilarity, and p can not terminate, this proof obligation can
be dropped, as it is a tautology.

4. pRq and q↓.
As there is no rule that fits ?a.(x �y)↓, we can apply the same reasoning
as used in the case p↓.

It is evident from the above that R is a bisimulation relation. Since (?a.x �\
y, ?a.(x � y)) ∈ R, ?a.x �\ y is bisimilar to ?a.(x � y), so axiom LMQ6 is
sound.

A.4 Soundness of Axiom RMQ6

Theorem A.4. Axiom RMQ6 is sound according to the semantics of QA and
the left and right queue merge.
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Proof. This is a dual to the proof of the soundness of axiom LMQ6, described
in section A.3 above, only substituting the semantics of the right queue merge
for that of the left queue merge.

A.5 Soundness of Axiom LMQ8

Theorem A.5. Axiom LMQ8 is sound according to the semantics of QA and
the left and right queue merge operators.

Proof. In order to prove soundness of ¬!(y) ⇒ !a.x �\ y = !a.(x � y), for all
processes x and y in BQP, consider the following relation R:

R = {((!a.x �\ y, !a.(x � y)), (x � y, x � y) | y, z ∈ P ∧ ¬!(y)}

R is a witness for axiom LMQ8, so we need to prove that R is a bisimulation
relation. It is evident that the second pair in R is bisimilar due to syntactical
equivalence, so we focus on the first pair. For each p and q in R it holds that
if we have pRq then p = !a.x �\ y and q = !a.(x � y), where ¬!(y) holds. We
distinguish the following cases:

1. pRq and p
a

−→ p′.
Note that a ∈ A!. Now we can only apply SOS rule 26 on p, resulting

in !a.x �\ y
!a
−→ x � y. q can simulate this behavior by applying rule 2,

resulting in !a.(x � y)
!a
−→ x � y. As the result of both equations is the

same, we can apply the induction hypothesis (x�y, x�y) ∈ R, and these
results are bisimilar. As the transitions are equal and the resulting states
are bisimilar, the two states before the transactions must therefore also
be bisimilar.

2. pRq and q
a

−→ q′.
Again note that a ∈ A!, therefore we can only apply rule 2 on q; !a.(x �

y)
!a
−→ x�y. This is simulated by p using rule 26; !a.x�\ y

!a
−→ x�y. By

the same reasoning as above (x � y, x � y) ∈ R, and thus are bisimilar.

3. pRq and p↓.
We could try to apply 28 on !a.x �\ y↓, and we would get !a.x↓ and y↓ as
conditional cases. Clearly there is no semantical rule for !a.x↓, so we can
not use 28 on p↓. In other words p can not terminate. As we are trying
to prove bisimilarity, and p can not terminate, this proof obligation can
be dropped, as it is a tautology.

4. pRq and q↓.
As there is no rule that fits !a.(x � y)↓, we can apply the same reasoning
as used in the case p↓.

A.6 Soundness of Axiom RMQ8

Theorem A.6. Axiom RMQ8 is sound according to the semantics of QA and
the left and right queue merge operators.
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Proof. This is a dual to the proof of the soundness of axiom LMQ8, described
in Section A.5 above, only substituting the semantics of the right queue merge
for that of the left queue merge, and swapping the send and receive actions.

A.7 Soundness of Axiom LMQ9

Theorem A.7. Axiom LMQ9 is sound according to the semantics QA and the
left and right queue merge.

Proof. In order to prove soundness of (x + y) �\ z = (x �\ z) + (y �\ z), for all
processes x, y, z in BQP, consider the following relation R:

R = {((x + y) �\ z, (x �\ z) + (y �\ z)), (x � y, x � y) | x, y, z ∈ P}

R is a witness for axiom LMQ9, so we need to prove that R is a bisimulation
relation. It is evident that the second pair in R is bisimilar due to syntactical
equivalence, so we focus on the first pair, for which it holds that if we have pRq
then p = (x+y)�\z and q = (x�\z)+(y�\z). We distinguish here the following
four cases:

1. pRq and p
a

−→ p′.
Regarding a we distinguish:

(a) a = ?b for some ?b ∈ A?. Then the only rule applicable to p is rule

24, so (x + y) �\ z
?b
−→ p′′ � z and x + y

?b
−→ p′′ for some p′′. This is

possible using rule 3 and 4:

i. Using rule 3, x+y
?b
−→ x′ for x

?b
−→ x′, so (x+ y)�\z

?b
−→ x′ �z.

This can be simulated in q with rules 3 and 24, resulting in

(x�\z)+(y�\z)
?b
−→ x′�z if x

?b
−→ x′, and we get (x′�z, x′�z) ∈

R.

ii. Using rule 4, x + y
?b
−→ y′ for y

?b
−→ y′, so (x + y) �\ z

?b
−→

y′ � z. This can be simulated in q by applying rules 4 and 24,

resulting in (x �\ z) + (y �\ z)
?b
−→ y′ � z if y

?b
−→ y′, so we get

(y′ � z, y′ � z) ∈ R.

(b) a = !b for some !b ∈ A!. Here the only rule applicable to p is rule 26,

so (x + y) �\ z
!b

−→ p′′ � z and (x + y)
!b

−→ p′′ and ¬!(z) for some p′′.
Now either rule 3 or 4 can be applied:

i. Using rule 3 we get (x + y) �\ z
!b

−→ x′ � z for x
!b

−→ x′ and
¬!(z). This can be simulated in q by applying rules 3 and then

26, resulting in (x�\z)+(y�\z)
!b

−→ x′�z, so (x′�z, x′�z) ∈ R.

ii. Using rule 4 we get (x+y)�\z
!b

−→ y′ �z for y
!b

−→ y′ and ¬!(z).
Again, this can be simulated in q by applying rules 4 and 26,

resulting in (x�\ z)+ (y �\ z)
!b

−→ y′ �z, so (y′ �z, y′ �z) ∈ R.

2. pRq and q
a

−→ q′.
There are two rules applicable here, 3 and 4:

(a) (x �\ z) + (y �\ z)
a

−→ q′′, for x �\ z
a

−→ q′′. Then we can distinguish
on a:
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i. a = ?b for some ?b ∈ A?. Then only rule 24 is applicable,

resulting in (x �\ z) + (y �\ z)
?b
−→ x′ � z for x

?b
−→ x′. This

can be simulated in p by applying rules 24 and 3, which yields

(x + y) �\ z
?b
−→ x′ � z for x

?b
−→ x′, so (x′ � z, x′ � z) ∈ R.

ii. a = !b for some !b ∈ A!. Then the only applicable rule is rule 26,

so (x �\ z) + (y �\ z)
!b

−→ x′ � z for x
!b

−→ x′ and ¬!(z). This
can be simulated in p by applying rules 26 and 3, resulting in

(x + y) �\ z
!b

−→ x′ � z for x
!b

−→ x′ and ¬!(z), so once again we
have (x′ � z, x′ � z) ∈ R.

(b) (x�\ z)+ (y �\z)
a

−→ q′′ for y �\ z
a

−→ q′′. This case is a dual to case
2a above.

3. pRq and p↓.
We can only apply rule 28, so (x + y) �\ z↓ if x + y↓ and z↓. On x + y↓
we can apply either rule 5 or 6:

(a) Using rule 5, (x + y) �\ z↓ if x↓ and z↓. In this case, q can terminate
by applying rule 5 and rule 28.

(b) Using rule 6, (x + y) �\ z)↓ if y↓ and z↓, and q can terminate by
applying rules 6 and 28.

4. pRq and q↓.
Here we can apply either rule 5 or 6:

(a) Using rule 5, (x �\ z) + (y �\ z)↓ if x �\ z↓, using rule 28 is true if x↓
and z↓. In this case, p can terminate using rules 28 and 5.

(b) Using rule 6, q can terminate if y �\ z↓, which is true using rule 28 if
y↓ and z↓. In this case, p can terminate using rules 28 and 6.

It is evident from the above that R is a bisimulation relation. Since ((x + y) �\
z, (x�\ z)+ (y �\ z)) ∈ R, (x+ y)�\ z is bisimilar to (x�\ z)+ (y �\ z), so axiom
LMQ9 is sound.

A.8 Soundness of Axiom RMQ9

Theorem A.8. Axiom RMQ9 is sound according to the semantics of QA and
the left and right queue merge.

Proof. This is a dual to the proof of the soundness of axiom LMQ9, described
in section A.7 above, only substituting the semantics of the right queue merge
for that of the left queue merge.

B Any Term in Greibach Normal Form

We want to show that using the axioms of QA, every term over QA can be
brought into Greibach Normal Form (GNF):

X =
∑

i∈IX

ai.ξi (+1) (18)
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This way, each right hand side of an equation can be written as a sum over
a number of terms indexed by a finite set IX (the empty sum is 0). Each term
is of the form 1 or ai.ξi, where ξi is defined as the queue merge over a number
of variables, i.e. Xi1 � Xi2 � . . . � Xin

. Note that action ai can either be a
send (!ai) or a receive (?ai) action.

We use structural induction to show that every term over QA can be brought
into GNF. Recall the definition of QA.

Q := ?a.Q | !a.Q | 1 | 0 | Q+Q | Q�Q | Q�\Q | Q/Q | ¬!(x) | ¬?(x) (19)

We distinguish the following cases.

case X = ?a.Y We define the following process:

X = ?a.Y, Y = Z (20)

The process Y = Z is in GNF by the induction hypothesis, which implies
that X = ?a.Z is also in GNF.

case X = !a.Y Exactly the same as the case X = ?a.Y , but with the ? replaced
by the !.

case X = 1 Trivial, a single 1 summand.

case X = 0 Trivial, the empty sum.

case X = Y + Z Terms Y and Z are in GNF by induction hypothesis. By
applying the definition we come to the following process.

X =
∑

i∈IY

ai.(ξi) (+1)Y ∈V+1 +
∑

i∈IZ

ai.(ξi) (+1)Z∈V+1 (21)

This can be rewritten to the following form, which is in GNF. A term
(X)cond is equal to the term (X) when condition cond holds. So the term
(+1)Y ∈V+1 is equal to +1 when Y ∈ V+1, i.e. when Y has a 1-summand.

∑

i∈IY ∪IZ

ai.(ξi) (+1)(Y ∈V+1∨Z∈V+1) (22)

case X = Y �\ Z By applying the definitions, we can rewrite X = Y �\ Z to
the following form.

(∑

i∈IY

ai.(ξi)(+1)Y ∈V+1

)
�\
(∑

i∈IZ

ai.(ξi)(+1)Z∈V+1

)
(23)

By applying axiom LMQ9 this can be rewritten to:

∑

i∈IY

(
ai.(ξi)�\

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1

)
+
(
1�\

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1

)
Y ∈V+1

(24)
Which can be rewritten using LMQ4, LMQ5 and LMQ3 to the following
form: ∑

i∈IY

(
ai.(ξi) �\

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1

)
(+1)Y,Z∈V+1 (25)

26



In order to check if this process can be written in GNF, we need to check
what the actions ai can do. Therefore we do a case distinction over the
following term:

ai.(ξi) �\
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1 (26)

case ∃i∈IY
(ai = ?a) When there exists a receive action on the left hand

side of the left queue merge we have the following situation:

?a.(ξi) �\
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1 (27)

This can be written by axiom LMQ6 into the following form, which
is in GNF.

?a.(ξi �Y ), Y =
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1 (28)

case ∃i∈IY
(ai = !a) When there exists a send action on the LHS of the

left queue merge we have the following situation:

!a.(ξi) �\
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1 (29)

Now, we need to make another case distinction. This is because the
!a can only be done when there are no send actions on the RHS of
the left queue merge. We therefore need to check whether there is a
send action on the RHS of the left queue merge.

case ∃i∈IZ
(ai = !b) In case there is a send action on the RHS of the

left queue merge, the process is in deadlock by axiom LMQ7.
Hence, in this case the process is equal to 0, which is in GNF as
has been shown earlier.

case ¬∃i∈IZ
(ai = b) In case there is no send action on the RHS of

the left queue merge, all actions on the side have to be receive
actions; ∀i∈IZ

(ai ∈ A?). Therefore we can use axiom NL2 and
NL3 to write the process as follows:

!a.(ξi) �\
∑

i∈IZ

¬!(ai.(ξi))(+¬!(1))Z∈V+1 (30)

Using axiom NL6 this can be rewritten to:

!a.(ξi) �\ ¬!(
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1) (31)

Which can rewritten using axiom LMQ8 to the following form.

!a.
(
ξi �¬!(

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1)
)

(32)

Because ¬∃i∈IZ
(ai = b), the following holds:

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1 = ¬!(
∑

i∈IZ

ai.(ξi)(+1)Z∈V+1) (33)
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Hence, we can rewrite the original process to the following form,
where Y is in GNF.

!a.Y, Y =
(
ξi �

∑

i∈IZ

ai.(ξi)(+1)Z∈V+1

)
(34)

Since we have shown that !a.Q can be written in GNF if Q is in
GNF, it follows that X = Y �\ Z can be written in GNF.

case X = Y /Z This can be proven in a similar way as in the case of X =
Y �\ Z.

case X = Y �Z By axiom MQ, X = Y �Z can be rewritten to the following
form.

X = Y �\ Z + Y /Z (35)

We have shown that the Y �\ Z and Y /Z can be written in GNF. Fur-
thermore we have shown that the alternative composition of two processes
in GNF is again in GNF. Hence Y �Z can be brought into GNF.

case X = ¬!(X) From the equational theory of QA (Table 6) it follows that
every term ¬!(X) can be rewritten into a term without the ¬!-operator.
The resulting term is then covered by any of the other cases.

case X = ¬?(X) This can be proven in a similar way as in the ¬!(X)-case.

C RSP Proof

Recall the definition of the queue:

Q =
∑

d∈D

?d.(Q � !d.1) + 1 (36)

We want to proof using RSP that this process is equal to the following
process:

Qε =
∑

d∈D

?d.Qd + 1 (37)

Qeξ =
∑

d∈D

?d.Qeξd + !e.Qξ (38)

For the proof we need that Qξ = Q � ξ. In the term Q � ξ, the term ξ
represents a term of the form !d1.1�!d2.1 . . .�!dn.1. The notation is as follows:

Q � ε = Q

Q � ξd = Q � !d.1 � ξ

Q � dξ = Q � ξ � !d.1

We first prove using RSP that Qξ = Q � ξ.
The base case is as follows:
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Q � ε

= {notation}

Q

= {definitionQ}∑

d∈D

?d.(Q � !d.1) + 1

= {notation}∑

d∈D

?d.(Q � d) + 1

= {definition Qε}

Qε

The inductive case is as follows:

Q � (ξ � !e.1)

= {definition Q}

(
∑

d∈D

?d.(Q � !d.1) + 1) � (ξ � !e.1)

= {axiom MQ}

(
∑

d∈D

?d.(Q � !d.1) + 1) �\ (ξ � !e.1)

+(
∑

d∈D

?d.(Q � !d.1) + 1) / (ξ � !e.1)

= {axioms LMQ9, LMQ5 and LMQ6 }

(
∑

d∈D

?d.(Q � !d.1 � ξ � !e.1)) + (
∑

d∈D

?d.(Q � !d.1) + 1) / (ξ � !e.1)

= {notation}

(
∑

d∈D

?d.(Q � eξd)) + (
∑

d∈D

?d.(Q � !d.1) + 1) / (ξ � !e.1)

= {axiom MQ}

(
∑

d∈D

?d.(Q � eξd)) + (
∑

d∈D

?d.(Q � !d.1) + 1) / (ξ �\ !e.1 + ξ / !e.1)

= {axiom LMQ7, ξ only consists of send actions}

(
∑

d∈D

?d.(Q � eξd)) + (
∑

d∈D

?d.(Q � !d.1) + 1) / (ξ / !e.1)

= {axioms RMQ6 and SQ1}

(
∑

d∈D

?d.(Q � eξd)) + (
∑

d∈D

?d.(Q � !d.1) + 1) / (!e.ξ)

= {axiom RMQ6}

(
∑

d∈D

?d.(Q � eξd)) + !e.((
∑

d∈D

?d.(Q � !d.1) + 1) � ξ)
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= {definition Q}
∑

d∈D

?d.(Q � eξd)) + !e.(Q � ξ)

= {Induction Hypothesis}∑

d∈D

?d.Qeξd + !e.Qξ

= {definition Qeξ}

Qeξ

And from the base case, trivially: Q = Qε.
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