
From Computability
to Executability

A process-theoretic view
on automata theory



From Computability
to Executability

A process-theoretic view
on automata theory

Paul van Tilburg



Copyright © 2011 by Paul van Tilburg
Some rights reserved. This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this license, visit the web
page http://reativeommons.org/lienses/by-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View, CA, 94041, USA.

IPA Dissertation Series 2011-11
ISBN: 978-90-386-2630-7
A catalogue record is available from the Eindhoven University of Technology Library

Typeset with LATEX (TEXLive 2009)
Cover design by Sofie van Schadewijk
Printed by Printservice Eindhoven University of Technology, The Netherlands

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics). The author was employed
at the Eindhoven University of Technology and supported by the Netherlands Organ-
isation for Scientific Research (NWO), project “Models of Computation: Automata
and Processes” (nr. 612.000.630).

http://creativecommons.org/licenses/by-sa/3.0/


From Computability to Executability
A process-theoretic view on automata theory

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op donderdag 27 oktober 2011 om 16.00 uur

door

Paulus Johannes Adrianus van Tilburg

geboren te Breda



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J.C.M. Baeten

Copromotor:
dr. S.P. Luttik



Contents

Contents vi

Figures viii

Glossary x

Preface xiii

1 Introduction 1
1.1 Automata & Formal Language Theory . . . . . . . . . . . . . . . . . . . . . 1
1.2 Concurrency Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Similarities & Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 9
2.1 Labelled Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Behavioural equivalences . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Branching degree, inertness and norm . . . . . . . . . . . . . . . . 11

2.2 The Process Theory TCPτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Subtheories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Kleene star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Axiomatisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Greibach normal form . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Finite-State Systems 21
3.1 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Linear Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Pushdown Systems 36

– vi –



CONTENTS

4.1 Pushdown Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.1 Termination Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Sequential Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Explicit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 According to the FSES Interpretation . . . . . . . . . . . . . . . . . 69
4.3.2 According to the FS Interpretation . . . . . . . . . . . . . . . . . . 71

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Parallel Pushdown Systems 77
5.1 Parallel Pushdown Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Termination Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Basic Parallel Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Explicit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Computable & Executable Systems 107
6.1 Reactive Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Expressiveness of RTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Effective & Computable Transition Systems . . . . . . . . . . . . . 114
6.2.2 Boundedly Branching Computable Transition Systems . . . . . . 117
6.2.3 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.4 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Explicit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusions 138
7.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Explicit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 142

Index 149

Summary 155

Samenvatting 157

Curriculum Vitae 159

– vii –



Figures

2.1 Two transition systems that belong to the same equivalence class with
respect to divergence-preserving branching bisimilarity. . . . . . . . . . . . . 12

2.2 Removing an inert τ-transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Two examples of finite automata. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 An example NFA that is not branching bisimilar to any DFA. . . . . . . . . . 24
3.3 Another example of a finite automaton. . . . . . . . . . . . . . . . . . . . . . . 27
3.4 A finite automaton without a linear specification with postfixing. . . . . . . 29
3.5 Infinitely branching transition system associated with an unguarded

specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 A finite automaton that has no regular expression up to bisimilarity. . . . . 31
3.7 A finite automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Classical correspondence results from automata theory. . . . . . . . . . . . . 34
3.9 Correspondence results from a process-theoretic perspective. . . . . . . . . 35

4.1 An example of a pushdown automaton. . . . . . . . . . . . . . . . . . . . . . . 39
4.2 The transition system associated with the example PDA according to the

(FS)ES interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Stack over D= {0,1 }. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 A pushdown automaton that is not initially terminating. . . . . . . . . . . . 43
4.5 The transition system associated with the PDA that is not initially termi-

nating according to the FSES interpretation. . . . . . . . . . . . . . . . . . . . 43
4.6 An example of an initially-terminating pushdown automaton. . . . . . . . . 44
4.7 Modified pushdown automaton for FSES to ES. . . . . . . . . . . . . . . . . . 44
4.8 Modified pushdown automaton for FSES to ES preserving divergence. . . 44
4.9 Modified pushdown automaton for FSES to FS. . . . . . . . . . . . . . . . . . 47
4.10 Modified pushdown automaton for FSES to FS preserving divergence. . . 47
4.11 The counter pushdown automaton. . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.12 The transition system associated with PDA of Figure 4.11 according to the

FS interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.13 The transition system associated with automaton of Figure 4.11 according

to the FSES interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.14 Overview of the different classes of pushdown transition systems. . . . . . 49

– viii –



FIGURES

4.15 Forgetful stack over D= {0,1 }. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.16 A transition system with unbounded branching. . . . . . . . . . . . . . . . . . 56
4.17 A pushdown automaton simulating sequential specification E. . . . . . . . . 57
4.18 A pushdown automaton that is not pop choice-free. . . . . . . . . . . . . . . 59
4.19 The transition system associated with the PDA of Figure 4.18. . . . . . . . . 59
4.20 The transition system associated with sequential specification defining the

PDA from Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.21 Diagram of the always-terminating stack specification. . . . . . . . . . . . . 72
4.22 Classical correspondence results from automata theory. . . . . . . . . . . . . 73
4.23 Correspondence results for the FSES interpretation. . . . . . . . . . . . . . . 76
4.24 Correspondence results for the FS interpretation. . . . . . . . . . . . . . . . . 76

5.1 An example of a parallel pushdown automaton. . . . . . . . . . . . . . . . . . 80
5.2 Bag over D= {0,1 }. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 A parallel pushdown automaton that is not initially terminating. . . . . . . 84
5.4 The transition system associated with the PPDA that is not initially

terminating according to the FSEB interpretation. . . . . . . . . . . . . . . . 84
5.5 The counter parallel pushdown automaton. . . . . . . . . . . . . . . . . . . . 86
5.6 The transition system associated with the automaton of Figure 5.5

according to the FSEB interpretation. . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Schematic overview of an attempted counter PPDA using the FS interpre-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8 Overview of the different classes of parallel pushdown transition systems. 87
5.9 A parallel pushdown automaton simulating basic parallel specification E. . 91
5.10 The transition system associated with the basic parallel specification

defining the counter PPDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.11 Correspondence results for the FSEB/FS/FSTB interpretations. . . . . . . . 105

6.1 An example of a reactive Turing machine. . . . . . . . . . . . . . . . . . . . . 110
6.2 An RTM that enumerates and sends the string 1#11#111#. . . . . . . . . . . 113
6.3 The transition system T0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 The transition system T1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5 Diagram of the step fragment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Diagram of the deterministic computable transition system simulator. . . . 122
6.7 Diagram of the queue specification. . . . . . . . . . . . . . . . . . . . . . . . . 128
6.8 Diagram of the tape process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.9 Relation between an RTM transition and specification transitions. . . . . . 134
6.10 Correspondence results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

– ix –



Glossary

This section provides an overview of often used symbols and acronyms. Per item we
give a short description and a reference to the (sub)section of its introduction.

Sorts & Variables

A a,b, c, . . . actions (2.1)
Aτ a,b, c, . . . actions (including unobservable) (2.1)
A
∗ w action sequences, words (2.1)

C c, i, o, . . . channels (2.2)
I i, j, k indices (2.2.4)
D d, e, f, . . . data symbols (2.2)
D
∗ σ,δ,ζ data symbol sequences, strings (4.1)

L(X ) L languages (accepted by X ) (2.1)
M automata (3.1)

M(X ) µ,ν multisets (over X ) (5.1)
N I,N,X, . . . names (2.2)
N
∗ ξ,χ,η,ρ name sequences (4.2.1)
N m, n natural numbers (2.1.1)
P p,q process expressions (2.2)

E,EB ,ES , . . . recursive specifications (2.2)
R regular expressions (3.3)
R relations (2.1.1)

S s, t,u, . . . states (2.1)
T(X ) T labelled transition systems (associated with X ) (2.1)

Multisets

; empty multiset (5.1)
¹xº singleton multiset (5.1)
µ(x) occurrences of x in µ (5.1)
x ∈ µ same as µ(x)≥ 1 (5.1)
µ ⊆ ν multiset inclusion; µ(x)≤ ν(x) for all x (5.1)
µ ⊎ ν union of multisets; (µ ⊎ ν)(x) = µ(x) + ν(x) (5.1)
µ− ν difference of multisets; (µ− ν)(x) = µ(x)− ν(x) (5.1)
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GLOSSARY

Actions

ǫ empty word (2.1)
τ unobservable action (2.1)p

explicit termination action (4.2.2)
#a(w) number of occurrences of action a in word w (2.1)
c?d receive data element d over channel c (2.2)
c!d send data element d over channel c (2.2)
c?!d communicate data element d over channel c (2.2)

Data

ǫ empty string (4.1)
D⊥/D∗/D� stack/bag/tape symbols (4.1/5.1/6.1)
⊥ stack symbol indicating the stack is empty (4.1)
∗ bag symbol indicating no element is removed (5.1)
∅ special stack/bag symbol preventing emptiness (4.1.1)
� tape symbol indicating the tape cell is blank (6.1)
#, |,¹,º special tape marker symbols (6.1)
δ,ζ,θ,δL ,δR tape strings (6.1)
ðxñ coding (of x) into a data string (6.2.2)

Automata & Transition Systems

↑ initial state (2.1)
↓ set of final states (2.1)
→ transition relation (2.1)
s↓ termination predicate (for state s) (2.1)

a−−→ transition or step labelled with action a (2.1)
(a)−−→ optional transition (2.1)
w−−։ multiple transitions, may include unobservable transitions (2.1)

−−→+ transitive closure of τ−−→ (2.1)

−−։ reflexive and transitive closure of τ−−→; same as ǫ−−։ (2.1)
a[d/δ]−−−−→ pushdown automaton transition (4.1)
a[d/µ]−−−−→ parallel pushdown automaton transition (5.1)
a[d/e]M−−−−−→ reactive Turing machine transition (6.1)

Equivalences

≈ language equivalence (2.1)
↔ strong bisimilarity (2.1.1)
↔6 ↓ strong bisimilarity without termination (4.2.2)
↔

b branching bisimilarity (2.1.1)
↔∆

b
divergence-preserving branching bisimilarity (2.1.1)

↔∆
rb

rooted divergence-preserving branching bisimilarity (2.2.3)
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Process Expressions

0 deadlocked or unsuccessfully terminated process (2.2)
1 empty or successfully terminated process, skip (2.2)
a.p action prefix (2.2)
p.a action postfix (3.2.1)
p + q alternative composition, choice (2.2)
p · q sequential composition (2.2)
p ‖ q parallel composition (2.2)
p T q left-merge operation (2.2)
p | q communication merge operation (2.2)
∂c(p) encapsulation of communication over channel c (2.2)
τc(p) abstraction of communication over channel c (2.2)�

p
�

c same as τc(∂c(p)) (2.2)

N
def
= p defining equation for name N (2.2)
(+ 1) optional 1-summand (2.2)
[+ 1]C conditional 1-summand with condition C (2.2)∑

i∈I pi alternative composition over index set I (2.2.4)

Acronyms

ACP Algebra of Communicating Processes [BK84]
BCP Basic Communicating Processes [BBR09]
BPA Basic Process Algebra [BK84]
BPP Basic Parallel Processes [Chr93]
BSP Basic Sequential Processes [BBR09]
CCS Calculus of Communicating Systems [Mil80]
CSP Communicating Sequential Processes [Hoa85]
DFA Deterministic finite automaton (3.1)
EB Termination on empty bag (5.1)
ES Termination on empty stack (4.1)
FS Termination on final state (4.1)
FSEB Termination on both final state and empty bag (5.1)
FSES Termination on both final state and empty stack (4.1)
FSTB Termination on both final state and transparent bag (5.2.1)
GNF Greibach normal form (2.2.4)
NFA Non-deterministic finite automaton (3.1)
PDA Pushdown automaton (4.1)
PPDA Parallel pushdown automaton (5.1)
RTM Reactive Turing machine (6.1)
TSP Theory of Sequential Processes [BBR09]
TCP Theory of Communicating Processes [BBR09]
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Preface

When I was taught process algebra in my Bachelor curriculum, I was struck by its
elegance. Process algebra takes something that is very natural to most of us – we
have all been taught mathematics and algebra in high school – and uses it to deal with
processes rather than numbers. Regardless of its practical use in software verification,
it has always provided me with a clear way to model systems in my mind. This goes
beyond models of computer systems and encompasses any kind of system we might
encounter in the real and virtual world.

It was exactly this feeling that drew me to the project “Models of Computation:
Automata and Processes,” which eventually became my Ph.D. research project. Its
aim is to integrate automata theory – something taught to every computer science
student around the world – with process theory. It provided me with a chance to
study the core of process algebra and establish an “improved” theory that included
the nowadays very important notion of interaction in a clean and systematic manner.
It turned out that questions from the process-theoretic point of view were the most
interesting, as automata theory mostly ignores the notion of interaction with the
environment and focuses on the outcomes rather than the processes or behaviour.

The desire to establish this “improved” theory has led me to the decision to rework
all publications written during the course of this project into a monograph. Although
there are many unanswered questions, many gaps, and many things left to do, I hope
this thesis provides a suitable overview.
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Chapter 1

Introduction

The foundations of computer science were laid in the 1930s, when computability
theory emerged as the theory that studies which functions are computable. At the core
of the computability theory is the theory of automata and formal languages, which
provides models of computing agents and means to reason about them. Here we
mean by computing the application of a deterministic algorithm that transforms input
into output. With the advent of the first computer terminal in the 1970s, the uprise
of inter-computer networks and multi-processor systems, and the recent introduction
of multi-core processors, the notion of interaction has become increasingly more
important. Concurrency theory, split off from the classical automata theory a few
decades ago, provides models of computation similar to the models given by the
theory of automata and formal languages, but focuses on concurrent, reactive and
interactive systems. Using this theory we can obtain a notion of executability on top
of computability by additionally considering interaction.

In this thesis we will investigate the integration of the two theories – automata
and concurrency theory – by taking prominent results from the field of automata
theory and considering them from a process-theoretic perspective. We first discuss
the background of both theories in this chapter. Then, we will consider the most
prominent similarities and differences between the two theories and indicate what
we adopt as leading research questions. Finally, an outline of the contents of the
thesis is given per chapter.

1.1 Automata & Formal Language Theory

Automata theory is the study of abstract “mathematical” machines and the com-
putational problems that can be solved using these machines. The theory has its
origins in the 1930s, when Turing defined a logical machine to define computable
numbers in [Tur37]. This and other models of computation, such as Kleene’s
recursive functions [Kle36] and Church’s λ-calculus [Chu36], lead to the emergence
of computability theory, the branch of mathematical logic that studies the theory
of effectively calculable (partial) functions. Interestingly, all these models turned out
to be equivalent: every effectively calculable function is computable with a Turing
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machine, a Kleene recursive function and is λ-definable. This can be considered as
evidence for the Church-Turing thesis stating that any function that can be computed
at all, now and in the future, with any real-world computing device, can be computed
with a Turing machine.

Turing’s logical machine had a finite number of states, capturing a program,
and a tape memory used during execution. Later, several definitions of various
kinds of automata were defined by the mathematicians Von Neumann [Neu56]
and Kleene [Kle56] to describe neural nets by means of a formal system. These
results were based on the neurophysiology research pioneered by McCullough and
Pitts [MP43]. The mathematical definitions of automata resulted in the link with for-
mal language theory: the study of the purely syntactic aspects of (formal) languages.
The first formal language is considered to have been defined by Frege in [Fre79] over
one century ago. Chomsky proposed the notion of a formal grammar in [Cho56].
While automata provide an operational way to describe computations and languages,
grammars accommodate a rather more generative approach. Correspondence results
between different kinds of automata and grammars followed and are described in
many textbooks on automata and formal language theory, for example see [Sud88,
Sip97, Lin01, HMU06].

In [Cho56], Chomsky discerns three classes of languages, which he later extends
to four in [Cho59]: regular, context-free, context-sensitive, and recursively enumer-
able. Taking the corresponding automata as central notion, this thesis will follow the
Chomsky hierarchy and develop a process-theoretic view on each class. We will look
at process-theoretic analogies of classic results for these classes from automata theory
and see if they still hold. If not, we explore what extra conditions are needed to make
them hold.

1.2 Concurrency Theory

Concurrency theory is the study of reactive systems, i.e., systems that depend on
interaction with their environment during their execution. Petri showed in his
thesis [Pet62] that concurrency and interaction may serve to bridge the gap between
the theoretically convenient (Turing machine) model of a sequential machine
with unbounded memory, and the practically more realistic notion of extensible
architecture of components with bounded memory. Towards the end of the 1970s,
Milner observed that, for a thorough investigation of concurrency and interaction, it
is profitable to study these notions in isolation rather than to try and add them to
any of the existing models of computation. One of his desiderata for the design of his
algebraic process theories was “that there be only a single combinator for combining
processes which interact or which coexist” [Mil93]. In particular, the interaction of
a computing device with its memory is to be modelled using a symmetric notion of
interaction, considering the memory as a separate process.

A large part of the research within the field of concurrency theory is devoted
to process theory. In process theory, interaction between systems is treated as
a first-class citizen, as it was established by e.g. [Mil80] (see also [Bae05]). It
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embodies a powerful composition operator that is used to compose systems in
parallel, including their interaction. A system is usually either directly modelled as
a labelled transition system, or as an expression in a process description language
with a well-defined operational semantics that associates a labelled transition system
with each expression. Note that the presence of these central notions expose the
relationship with automata theory, as finite transition systems and process description
languages can be considered as the process-theoretic counterparts of finite automata
and grammars. The process description languages, also called process algebras,
CCS by Milner [Mil80, Mil89], ACP by Bergstra & Klop [BK84] and CSP by
Hoare [Hoa85] have been the most prominent for quite some years. Nowadays also
the π-calculus, a process algebra devised by Milner [Mil99] that can be seen to some
extent as the interactive version of the λ-calculus [Chu32], has taken an important
place amongst the process theories. In this thesis we use the process theory TCPτ
(Theory of Communicating Processes with τ) [BBR09], which is a generic process
algebra encompassing key features of ACP, CCS and CSP.

One of the main contributions of concurrency theory is a richness of behavioural
equivalences on labelled transition systems that to a more or lesser extent preserve
the branching structure. In concurrency theory, behaviours are usually considered
modulo a suitable behavioural equivalence. In this thesis we shall mainly use
(divergence-preserving) branching bisimilarity [GW96], which is the finest behavioural
equivalence in Van Glabbeek’s spectrum (see [Gla93] for an overview).

1.3 Integration

The theory of automata and formal languages was developed to provide models of
computing systems and to reason about them; it even turned out to provide powerful
models of computation in general. The theory has been very successful and became
widespread. It has many applications and appears in every academic curriculum
of computer science. On the other hand, the theory deals with the computation of
functions. It can no longer provide a basic model of a computer.

Nowadays, computers are systems that interact continuously not only with us but
also with each other; they are non-deterministic, reactive systems. An execution
performed by a computer is thus not just a series of steps of an algorithm, but it
also involves interaction. It has inherent non-determinism and cannot be modelled
as a function. Concurrency theory provides exactly this. We can see an execution
as a computation plus interaction as modelled in concurrency theory. To illustrate
the difference between a computation and an execution, we can say that a Turing
machine cannot fly a plane, but a computer can. An automatic pilot cannot know all
conditions beforehand, but rather can react to changing conditions real-time.

The goal of this thesis is to investigate the integration of automata and process
theory, exposing the differences and similarities between them. Because concurrency
theory split off from automata theory in the past, some notions are still the same.
For example, the notion of a finite automaton is the same as a finite-state transition
system; a linear grammar has only minor syntactic differences with a finite recursive
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specification over some process algebra. We consider classical definitions and results
from automata theory in a process-theoretic setting to make the integration explicit.
The attempt at integration hopefully increases the understanding of both theories.

There have been results that consider classical results from a process-theoretic
perspective, see for example [HS91, Gro92, BBK93, CHS95, Mol96, Srb01, Sti03].
However, no attempt has been made at full integration of the two theories as is done
in this thesis. There have also been other attempts to add a notion of interaction to
computability theory, see [LW00, GSAS04, GSW06, BGRR07]. But here, the attempts
do not take full advantage of the results of concurrency theory. In all formalisations
of interaction machines we could find, interaction is added as an asymmetric notion.
The focus remains on the computational aspect, and interaction is included as a
second-class citizen. In this thesis we want to study a theory of executability that treats
computation and interaction on an equal footing, because we think that this will lead
to a more suitable theory of behaviour of contemporary computing systems. Note
that the full integration also has a practical side: the result can be incorporated into a
Bachelor course, providing students with an increased understanding of concurrent,
reactive systems.

The integration in this thesis includes the reinvestigation of, e.g., the corre-
spondence between finite-state automata, regular languages, regular expressions
and regular grammars, and the correspondence between pushdown automata and
context-free languages (see [Sud88, Sip97, Lin01, HMU06] for details of these
results). We also approach the classes of languages from a different angle and
consider the class of so-called parallel pushdown systems. Parallel pushdown systems
are obtained by replacing the sequential composition operator used in context-free
languages by the typical operator from process theory, the parallel composition.

1.4 Similarities & Differences

As we attempt the full integration, we consider the following important differences
in our approach with respect to both automata theory and process theory.

A main difference in approach with respect to automata theory is that we
use the semantics of concurrency theory, labelled transition systems, as a central
notion. Instead of looking at the classes of languages that are accepted by the
various kinds of automata, we look at the classes of transition systems associated
with the automata. This way, we can choose to divide out a suitable behavioural
equivalence to obtain the desired results. For example, languages can still be obtained
from the transition systems by dividing out language equivalence. We will see
that the way the transition systems are associated with each kind of automaton
provides the operational semantics of the automaton. For pushdown automata and
parallel pushdown automata we shall consider different termination conditions such
as termination on final state and termination on empty stack/bag. While the different
termination conditions yield the same classes of languages, we will see that they yield
different classes of associated transition systems.

– 4 –



1.4. SIMILARITIES & DIFFERENCES

A second main difference between automata theory and concurrency theory is
that concurrency theory considers language equivalence to be too coarse to capture a
notion of interaction. Looking at an automaton as a language acceptor, acceptance
of a string represents a particular computation of the automaton, and the language
is the set of all its computations. But, using language equivalence we abstract
from moments of choice within the automaton. As a consequence, the language-
theoretic interpretation is only suitable under the assumption that an automaton
is a stand-alone computational device; it is unsuitable if some form of interaction
of the automaton with its environment (e.g. a user, other automata running in
parallel, etc.) may influence its behaviour. Concurrency theory offers other notions of
behavioural equivalence. We use the most fine-grained equivalence that preserves the
branching structure that the theory currently offers: divergence-preserving branching
bisimulation. We will see that when we reconsider classical, quite straight-forward
results from automata theory, e.g. the correspondence between pushdown automata
and context-free grammars, may no longer hold modulo this equivalence. In this
case we shall apply restrictions on languages and automata to remedy the situation.
Note that in between language equivalence and divergence-preserving branching
bisimulation equivalence, there are several other equivalence relations (see [Gla93]).
We shall sometimes drop divergence-preservation when this is necessary.

A third difference is that a notion of final state is often missing in concurrency
theory. For finite-state automata we have the notion of intermediate termination.
This means that termination might occur at the same time that the automaton can
continue with its computation/execution. Recall that concurrency theory deals with
so-called reactive systems, which need not terminate but are always on, reacting
to stimuli from the environment. As a result, intermediate termination is often
neglected in concurrency theory. Using the process theory TCPτ, which includes
notation for a terminating process [BBR09], we obtain a full correspondence with
automata theory: a finite-state transition system is exactly a finite automaton. Note
that we still fully incorporate the reactive systems approach of concurrency theory:
non-terminating behaviour is also relevant behaviour, which is taken into account by
allowing for (infinite) recursion. Per kind of automata we will try to find a suitable
specification language, the process-theoretic counterpart of grammars, and investigate
the correspondence between the class of transition systems associated with the
automata and the class of transition system associated with the specifications.
In [Mol96], Moller presents an overview of the differences in expressive power
using labelled transition systems associated with notions that we find in this thesis,
such as finite-state automata, pushdown and parallel pushdown automata, several
specification languages and Petri nets. We will use and extend results from this
paper in the following chapters when we investigate the correspondences between
automata and specification languages. We will see that the presence of a terminating
process that also allows for continuation of execution makes a process theory too
powerful in the sense that a specification language can express more than what can
be executed by an automaton; this occurs in particular in combination with sequential
composition.
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A final difference between automata theory and concurrency theory is that
in automata theory for pushdown automata and Turing machines the interaction
between the finite-state automaton and its memory is left rather implicit. In
the upcoming chapters we will model for each kind of automaton the finite-state
automaton and its memory separately by means of a process description, and
show that using a parallel operator that allows for communication we obtain a
correspondence with the original automaton. This way we make the interaction
explicit, thus fulfilling Milner’s aforementioned desideratum that the interaction of
a computing device with its memory should be modelled using a symmetric notion of
interaction, modelling the memory as a separate process.

1.5 Thesis Outline

Below we give an outline of the contents of the thesis and summarise the main
definitions and contributions of each chapter. Note that Chapters 3, 4, and 6
correspond to classes of the Chomsky hierarchy.

Chapter 2 recapitulates the basic definitions of labelled transitions systems and the
behavioural equivalences that are relevant. We also introduce the process theory
TCPτ and several subtheories that are used throughout the thesis.

Chapter 3 discusses finite-state systems. It contains a process-theoretic view on the
classical correspondence results between the four ways to describe regular languages:
non-deterministic finite automata, deterministic finite automata, regular grammars
and regular expressions. A side-goal of this chapter is to recapitulate central notions
from automata theory, cast in our process-theoretic framework, as they will reappear
in the subsequent chapters. Automata are defined as finite transition systems;
regular grammars are defined as finite recursive BSPτ-specifications called linear
specifications. Because regular expressions can be defined as process expressions
over TSP∗τ , a subtheory of TCPτ extended with the Kleene star, no casting in our
process-theoretic framework is needed. However, since the regular expressions
are not sufficient to describe all finite automata up to (branching) bisimilarity, we
propose regular expressions extended with parallel composition, communication, and
encapsulation as the process-theoretic counterparts of regular expressions.

The main definitions and theorems of this chapter are listed in the table below.

Finite-State Systems

Finite automaton Definition 3.1

Regular language, finite-state process Definition 3.3
Linear specification Definition 3.9
Regular expression Definition 3.20

Correspondence of finite automata and linear specifications Theorem 3.13
Correspondence of finite automata and extended regular expressions Theorem 3.24
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Chapter 4 treats pushdown systems. We give semantics to pushdown automata
by means of transition systems. As in automata theory, we have to consider two
different termination conditions: termination on final state and termination on
empty stack. We add to these conditions termination on final state and empty
stack and find that up to divergence-preserving branching bisimilarity the transition
systems associated with pushdown automata fall apart into different classes. We
introduce sequential specifications as the process-theoretic counterpart of context-
free languages and investigate the correspondence with the pushdown automata for
the different termination conditions. We show that under certain restrictions it is
decidable whether two sequential specifications define the same transition system
up to bisimilarity. Finally, we make the interaction within a pushdown automaton
explicit by giving a finite-state process representing the finite control of the pushdown
automaton and putting it in parallel with a stack process.

The main definitions and theorems of this chapter are listed in the table below.

Pushdown Systems

Pushdown automaton Definition 4.1

Pushdown transition system Definition 4.4
Pushdown language, pushdown process Definition 4.6
Sequential specification Definition 4.17

Class distinctions for different termination conditions Theorems 4.9 and 4.14,
Examples 4.10 and 4.15

Correspondence of pushdown automata and sequential

specifications

Theorems 4.31 and 4.35

Explicit interaction for pushdown automata Theorems 4.42, 4.43, and 4.46
Decidability of bisimilarity on sequential specifications Theorem 4.40

Chapter 5 investigates parallel pushdown systems, obtained by analogy from
pushdown systems by replacing sequential composition by parallel composition. We
define parallel pushdown automata, parallel pushdown transition systems and basic
parallel specifications. Following the preceding chapter, we consider the distinct
termination conditions for parallel pushdown automata, with termination on empty
bag instead of on empty stack, which again lead to different classes of parallel
pushdown transition systems. We introduce basic parallel specifications as the
process-theoretic counterpart of commutative context-free grammars and investigate
the relation between parallel pushdown automata and basic parallel specifications.
In contrast with the previous chapter, we show that it is decidable whether two basic
parallel specifications define the same transition system up to bisimilarity, without
needing to apply restrictions. Finally, we make the interaction within the parallel
pushdown automata explicit by giving a finite-state process representing the finite
control and putting it in parallel with a bag process.
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The main definitions and theorems of this chapter are listed in the following table.

Parallel Pushdown Systems

Parallel pushdown automaton Definition 5.1
Parallel pushdown transition system Definition 5.4

Parallel pushdown language, parallel pushdown process Definition 5.5
Basic parallel specification Definition 5.16

Class distinctions for different termination conditions Theorem 5.9, Examples 5.10,
5.13, and 5.14

Correspondence of parallel pushdown automata and basic

parallel specifications

Theorems 5.29 and 5.31

Explicit interaction for parallel pushdown automata Theorems 5.41, 5.42, 5.43,
and 5.45

Decidability of bisimilarity on basic parallel specifications Theorems 5.36 and 5.38

Chapter 6 studies computable and executable systems and the relation with effec-
tive and computable transition systems and Turing machines. For this we present the
reactive Turing machine, a classical Turing machine augmented with capabilities for
interaction. Classically, Turing machines are associated with recursively enumerable
languages and unrestricted grammars. We define transition systems that can
be simulated by a reactive Turing machine as executable transition systems, and
consider TCPτ as the process-theoretic version of unrestricted grammars. Instead of
reinvestigating this correspondence we investigate the expressiveness of the notion of
reactive Turing machines to see if we can still simulate computable transition systems
and if it is universal with respect to executable transition systems. Again, we make
the interaction within the reactive Turing machine between finite control and tape
explicit.

The main definitions and theorems of this chapter are listed in the table below.

Computable & Executable Systems

Reactive Turing machine Definition 6.1
Effective & computable transition system Definition 6.4
Executable process Definition 6.6

Correspondence of effective & computable transition
systems and reactive Turing machines

Theorems 6.22 and
Corollary 6.23

Universality of reactive Turing machines Theorems 6.30 and 6.31
Explicit interaction for reactive Turing machines Theorem 6.38 and

Corollary 6.39

Chapter 7 draws several conclusions and outlines future work.
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Chapter 2

Preliminaries

In this chapter, we first briefly recap the basic definitions of labelled transition
systems and related notions. Then, we introduce the process theory TCPτ (Theory of
Communicating Processes with τ) and several subtheories used in this thesis.

2.1 Labelled Transition Systems

From here onwards we assume the existence of a countably infinite set of action
symbols (or just: actions) of which A is some finite subset. We also fix an unobservable
action (also called silent or internal action), denoted by the symbol τ, assuming that
τ 6∈A; we denote the set A∪ {τ } as Aτ. We let a,b, c range over Aτ.

DEFINITION 2.1. A labelled transition system T is defined as a four-tuple (S,→,↑,↓)
where:

1. S is a (possibly infinite) set of states,

2. → ⊆ S×Aτ × S is an Aτ-labelled transition relation on S,

3. ↑ ∈ S is the initial state,

4. ↓ ⊆ S is the set of final states.

If (s,a, t) ∈→, we write s a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓. △

Furthermore, we abbreviate the statement ‘s a−−→ t or (a = τ and s = t)’ with
s (a)−−→ t. We denote the transitive closure of τ−−→ by −−→+, and we denote the reflexive-
transitive closure of τ−−→ by −−։.

DEFINITION 2.2. Let T be a labelled transition system and let s, t be states in T. We
define an (input) word w as a sequence of actions, i.e. w = a1 · · ·an ∈ A

∗, and let ǫ
denote the empty word; we write s w−−։ t if there exist states s0, . . . , sn in T such that
s = s0 −−։ a1−−→−−։ s1 · · · −−։ an−−→−−։ sn = t.

If s w−−։ t for some w ∈A∗, then we say that t is reachable from s in T. △

We will use the notation #a(w) to count the occurrences of some action a in
word w. Note that always #τ(w) = 0.
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If we consider transition systems, we can collect all words that lead from the initial
state to a final state. In automata theory, this collection is called a language.

DEFINITION 2.3. Let T = (S,→,↑,↓) be a transition system. The language L(T)

accepted by T is defined as

L(T) = {w ∈A∗ | ∃s ∈ ↓ such that ↑ w−−։ s } .

The transition systems T1 and T2 are language equivalent (notation: T1 ≈ T2) iff
L(T1) = L(T2). △

2.1.1 Behavioural equivalences

We first define bisimilarity, originally proposed by Park in [Par81], extended with
conditions for termination. This equivalence relation treats silent transitions as
ordinary transitions; it is therefore often referred to as strong bisimilarity.

DEFINITION 2.4. Let T1 = (S1,→1,↑1,↓1) and T2 = (S2,→2,↑2,↓2) be transition
systems. A bisimulation between T1 and T2 is a binary relation R ⊆ S1 × S2 such
that ↑1 R ↑2 and, for all actions a ∈Aτ and states s1 and s2, s1 R s2 implies

1. if s1
a−−→ s′1 then there exists s′2 such that s2

a−−→ s′2 and s′1 R s′2,

2. if s2
a−−→ s′2 then there exists s′1 such that s1

a−−→ s′1 and s′1 R s′2,

3. if s1↓ then s2↓ and vice versa.

The transition systems T1 and T2 are bisimilar (notation: T1
↔ T2) if there exists a

bisimulation between T1 and T2. △

A result from concurrency theory is that language equivalence is arguably too
coarse for reactive systems, because it abstracts from all moments of choice (see,
e.g., [BBR09]). In concurrency theory many alternative behavioural equivalences
have been proposed; we refer to [Gla93] for a classification.

The bisimilarity behavioural equivalence might be considered too strong, as it
does not abstract from silent, internal transitions. Therefore, most results of this
thesis are modulo branching bisimilarity [GW96], which is the finest behavioural
equivalence in Van Glabbeek’s linear time – branching time spectrum [Gla93]. We
shall consider both the divergence-insensitive and the divergence-preserving variant.
By taking divergence into account, most of our results do not depend on fairness
assumptions; these assumptions are needed if systems contain loops of internal
transitions. (The divergence-preserving variant is called branching bisimilarity with
explicit divergence in [Gla93, GW96], but in this thesis we prefer the term divergence-
preserving branching bisimilarity.)

DEFINITION 2.5. Let T1 = (S1,→1,↑1,↓1) and T2 = (S2,→2,↑2,↓2) be transition
systems. A branching bisimulation between T1 and T2 is a binary relation R ⊆ S1 × S2

such that ↑1 R ↑2 and, for all states s1 and s2, s1 R s2 implies

1. if s1
a−−→1 s′1, then there exist s′2, s′′2 ∈ S2 such that s2 −−։2 s′′2

(a)−−→2 s′2, s1 R s′′2 and
s′
1
R s′

2
;
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2.1. LABELLED TRANSITION SYSTEMS

2. if s2
a−−→2 s′2, then there exist s′1, s′′1 ∈ S1 such that s1 −−։1 s′′1

(a)−−→1 s′1, s′′1 R s2 and
s′
1
R s′

2
;

3. if s1↓1, then there exists s′2 such that s2 −−։2 s′2, s1 R s′2 and s′2↓2; and

4. if s2↓2, then there exists s′1 such that s1 −−։1 s′1, s′1 R s2 and s′1↓1.

The transition systems T1 and T2 are branching bisimilar (notation: T1
↔

b T2) if there
exists a branching bisimulation between T1 and T2.

A branching bisimulation R between T1 and T2 is divergence-preserving if, for all
states s1 and s2, s1 R s2 implies

5. if there exists an infinite sequence (s1,i)i∈N such that s1 = s1,0, s1,i
τ−−→ s1,i+1 and

s1,i R s2 for all i ∈ N, then there exists a state s′2 such that s2 −−→+ s′2 and s1,i R s′2
for some i ∈ N; and

6. if there exists an infinite sequence (s2,i)i∈N such that s2 = s2,0, s2,i
τ−−→ s2,i+1 and

s1 R s2,i for all i ∈ N, then there exists a state s′1 such that s1 −−→+ s′1 and s′1 R s2,i

for some i ∈ N.

The transition systems T1 and T2 are divergence-preserving branching bisimilar (no-
tation: T1

↔∆
b

T2) if there exists a divergence-preserving branching bisimulation
between T1 and T2. △

It has been proved that branching bisimilarity is an equivalence relation on
labelled transition systems [Bas96]; for divergence-preserving branching bisimilarity
this has been shown in [GLT09].

2.1.2 Branching degree, inertness and norm

We will need as auxiliary notions the notion of inert τ-transition and the notion of
branching degree of a state. For a definition we first define (divergence-preserving)
branching bisimulation on a labelled transition system, and the quotient of a labelled
transition system by its maximal (divergence-preserving) branching bisimulation.

Let T = (S,→,↑,↓) be a labelled transition system. A (divergence-preserving)
branching bisimulation on T is a binary relation R on S that satisfies conditions 1–4
(conditions 1–6 in the case of divergence-preservation) of Definition 2.5. Let R be
the maximal (divergence-preserving) branching bisimulation on T. Then R is an
equivalence on S; we denote by [s]R the equivalence class of s ∈ S with respect to R

and by S/R the set of all equivalence classes of S with respect to R. On S/R we
can define an Aτ-labelled transition relation →R by [s]R a−−→R [t]R if, and only if,
there exist s′ ∈ [s]R and t′ ∈ [t]R such that s′ a−−→ t′. Furthermore, we define ↑R =
[↑]R and ↓R = { s | ∃s′ ∈ ↓ such that s ∈ [s′]R }. Now, the quotient of T by R is the
labelled transition system T/R = (S/R,→R ,↑R ,↓R). It is straightforward to prove
that each labelled transition system is (divergence-preserving) branching bisimilar to
its quotient by its maximal (divergence-preserving) branching bisimulation.

DEFINITION 2.6. An equivalence class of transition systems with respect to diver-
gence-preserving branching bisimilarity is called a process. △
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2.1. LABELLED TRANSITION SYSTEMS

EXAMPLE 2.7. The two transition systems in Figure 2.1 are divergence-preserving
branching bisimilar; they are two representatives of the same process of which the
left-most is the minimal form. ♦

a
a a a a a

FIGURE 2.1: Two transition systems that belong to the same equivalence class
with respect to divergence-preserving branching bisimilarity.

DEFINITION 2.8. Let T be a labelled transition system and let s and t be two states
in T. A τ-transition s τ−−→ t is inert if s and t are related by the maximal branching
bisimulation on T. △

If s and t are distinct states, then an inert τ-transition s τ−−→ t can be eliminated
from a labelled transition system by: removing all outgoing transitions of s, changing
every outgoing transition t a−−→ u from t to an outgoing transition s a−−→ u from s,
changing every incoming transition u a−−→ t to t to an incoming transition u a−−→ s to s,
and removing the state t. This operation yields a labelled transition system that is
branching bisimilar to the original labelled transition system.

EXAMPLE 2.9. Consider the labelled transition systems in Figure 2.2. Here, the inert
τ-transition from state s to t in the transition system on the left is removed by
removing the transition s a−−→u and moving all outgoing transitions of t to s, resulting
in the transition system on the right. This is possible because s and t are branching
bisimilar. ♦

s

tu

v w

τa

a b

s

v w

a b

FIGURE 2.2: Removing an inert τ-transition.

To get a notion of branching degree that is preserved up to branching bisimilarity,
we define the branching degree of a state as the branching degree of the correspond-
ing equivalence class of states modulo the maximal branching bisimilarity.

DEFINITION 2.10. Let T be a labelled transition system, and let R be its maximal
branching bisimulation. The branching degree of a state s in T is the cardinality of the
set { (a, [t]R) | [s]R a−−→R [t]R } of outgoing edges of the equivalence class of s in the
quotient T/R.
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We say that T has finite branching if all states of T have a finite branching degree.
We say that T has bounded branching if there exists a natural number n≥ 0 such that
every state has a branching degree of at most n. △

Branching bisimulations respect branching degrees in the sense that if R is a
branching bisimulation between T1 and T2, s1 is a state in T1 and s2 is a state in
T2 such that s1 R s2, then s1 and s2 have the same branching degree.

DEFINITION 2.11. Let T be a labelled transition system, and let R be its maximal
branching bisimulation. The norm of a state s is the minimal number of transitions
needed to reach a state that can terminate. We define it formally as follows:

norm(s) = inf{ length(w) | w ∈A∗ such that s w−−։ s′ ∧ s′↓ } .

Note that this means that if there is no path from state s to a state that can terminate,
then norm(s) =∞. △

2.2 The Process Theory TCPτ

TCPτ is a generic process algebra encompassing key features of CSP [Hoa85],
CCS [Mil80, Mil89], and ACP [BK84]: it uses prefixing and choice from CCS, par-
allelism from ACP (including its axiomatisation) with a generalised communication
mechanism suitable to model communication over channels, and extends recursion
from both CCS and ACP. With respect to the three older algebras, it additionally
discerns unsuccessful termination, i.e. deadlock, and successful termination. We
introduce an instance of TCPτ with the specific form of handshaking communication
from [BCLT10]. For the full definition, see [BBR09].

We use a finite set C of channels and we assume the existence of a countably
infinite set of data symbols (or data elements) of which D is some finite subset; we
often let c range over C and d, e, f range over D. We introduce the set of special
actions A

′ = { c?d, c!d, c?!d | d ∈ D, c ∈ C }; it is assumed that A′ ⊆ A. Intuitively, the
actions c?d, c!d, c?!d respectively denote the events that a data element d is received,
sent, or communicated along channel c. Our instantiated version of TCPτ can be
seen as generic TCPτ with a fixed, standard handshaking communication function γ,
defined as follows:

γ(c!d, c?d) = c?!d for all c ∈D, d ∈D.

This communication function is used throughout the thesis, unless a different
communication function is explicitly defined. We assume the existence of a countably
infinite set of names of which N is some finite subset; we often let N, but also X and
Y, range over N. In literature, names are also often called variables or non-terminals.

The set of process expressions P(TCPτ) is generated by the following grammar
(a ∈Aτ,N ∈N, c ∈ C):

p ::= 0 | 1 | a.p | p · p | p+ p | p ‖ p | p T p | p | p | ∂c(p) | τc(p) | N .
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2.2. THE PROCESS THEORY TCPτ

If a process expression contains no names, we say that the process expression is closed.
Let us briefly comment on the operators in this syntax. The constant 0 denotes

deadlock, the unsuccessfully terminated process. The constant 1 denotes skip, the
successfully terminated process. For each action a ∈ Aτ there is a unary operator a.

denoting action prefix; the process denoted by a.p can perform an a-transition to the
process denoted by p. The binary operator · denotes sequential composition. The
binary operator + denotes alternative composition or choice. The binary operator ‖
denotes parallel composition; actions of both arguments are interleaved, and in
addition a communication c?!d of a data element d on channel c can take place if one
argument can do an input action c?d that matches an output action c!d of the other
component. The left-merge T and communication merge | are auxiliary operators
needed for the axiomatisation that we shall present later on. The unary operator ∂c(p)

encapsulates the process p in such a way that all input actions c?d and output actions
c!d are blocked (for all data) so that communication on channel c is enforced. Finally,
the unary operator τc(p) denotes abstraction from communication over channel c in p

by renaming all communications c?!d to τ-transitions. We shall abbreviate τc(∂c(p))

with
�

p
�

c .
We will sometimes use the notation [+ p]C to indicate that the optional summand

with process expression p is only added if condition C holds.

DEFINITION 2.12. A recursive (TCPτ-)specification E is a set of equations of the form:

N
def
= p, with as left-hand side a name N and as right-hand side a (TCPτ-)process

expression p. It is required that a recursive specification E contains, for every N ∈ N,
at most one equation with N as left-hand side; this equation will be referred to as the
defining equation for N in N. Furthermore, if some name occurs in the right-hand side
of some defining equation, then the recursive specification must include a defining
equation for it. △

We use Structural Operational Semantics [Plo04] to associate a transition relation
with process expressions: let → be the Aτ-labelled transition relation induced
on the set of process expressions by the operational rules in Table 2.1. Note
that the operational rules presuppose a recursive specification E and a termination
predicate _↓.

DEFINITION 2.13. Let E be a recursive specification and let p be a process expression.
We define the labelled transition system TE(p) = (Sp ,→p ,↑p ,↓p) associated with p and E

as follows:

1. the set of states Sp consists of all process expressions reachable from p;

2. the transition relation →p is the restriction to Sp of the transition relation →
defined on all process expressions by the operational rules in Table 2.1, i.e.,
→p =→∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and

4. the set of final states consists of all process expressions q ∈ Sp such that q↓, i.e.,
↓p = ↓ ∩ Sp . △
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1↓ a.p a−−→ p

p a−−→ p′

p + q a−−→ p′
q a−−→ q′

p + q a−−→ q′
p↓

(p + q)↓
q↓

(p + q)↓

p a−−→ p′

p · q a−−→ p′ · q
p↓ q a−−→ q′

p · q a−−→ q′
p↓ q↓
(p · q)↓

p c!d−−→ p′ q c?d−−→ q′

p | q c?!d−−→ p′ ‖ q′
p c?d−−→ p′ q c!d−−→ q′

p | q c?!d−−→ p′ ‖ q′
p↓ q↓
(p | q)↓

p a−−→ p′

p T q a−−→ p′ ‖ q

p a−−→ p′

p ‖ q a−−→ p′ ‖ q

q a−−→ q′

p ‖ q a−−→ p ‖ q′
p↓ q↓
(p ‖ q)↓

p c!d−−→ p′ q c?d−−→ q′

p ‖ q c?!d−−→ p′ ‖ q′
p c?d−−→ p′ q c!d−−→ q′

p ‖ q c?!d−−→ p′ ‖ q′

p a−−→ p′ a 6= c?d, c!d

∂c(p)
a−−→ ∂c(p

′)

p↓
∂c(p)↓

p c?!d−−→ p′

τc(p)
τ−−→ τc(p

′)

p a−−→ p′ a 6= c?!d

τc(p)
a−−→ τc(p

′)

p↓
τc(p)↓

p a−−→ p′ (N
def
= p) ∈ E

N a−−→ p′
p↓ (N

def
= p) ∈ E

N↓

TABLE 2.1: Operational rules for a recursive recursive TCPτ-specification E

and termination predicate _↓ (a ∈Aτ, c ∈ C, d ∈D).

Sometimes it is useful to designate an initial name for a recursive specification. It
is then possible to associate a transition system with a recursive specification without
giving the specific process expression. In other words, if I is the initial name of some
recursive specification E, then its associated transition system is given by TE(I).

In the other direction, if we only have a transition system associated with some
recursive specification E and process expression p, it is clear we can always define
a recursive specification E′ obtained from E by adding initial name I with defining

equation I
def
= p.
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We use the guardedness restriction, taken from [BBP94], on recursive specifica-
tions throughout the thesis.

DEFINITION 2.14. Let p be a process expression containing the name N. An
occurrence of N in p is τ-guarded if p has a sub-expression a.q, where a ∈ Aτ and
q contains this occurrence of N.

We call a recursive specification E τ-guarded if for each defining equation N
def
= pN

we can obtain, by substituting pN for N in the specification a finite number of times,
the situation that pN is τ-guarded. △

To guarantee that the specification has a unique solution, we present another
restriction depending the operational semantics.

DEFINITION 2.15. A recursive specification E is τ-founded (or τ-convergent) if there
does not exist a process expression such that TE(p) has an infinite τ-path. △

We call a recursive specification guarded if it is both τ-guarded and τ-founded.

2.2.1 Subtheories

In the thesis we encounter several subtheories of TCPτ. A subtheory of TCPτ has a
restricted signature and includes only the operational rules from Table 2.1 relevant
for this signature to obtain the associated transition systems.

For the theory BSPτ (Basic Sequential Processes) the set of process expres-
sions P(BSPτ) contains all process expressions without occurrences of sequential
composition, parallel composition, encapsulation and abstraction; we only have
deadlock, skip, prefixing and alternative composition.

For the theory TSPτ (Theory of Sequential Processes) the set of process expres-
sions P(TSPτ) contains all the processes expressions without occurrences of parallel
composition, encapsulation and abstraction; it can be obtained from P(BSPτ) by
adding sequential composition.

Finally, for the theory BCPτ (Basic Communicating Processes) the set of processes
expressions P(BCPτ) contains all process expressions without occurrences of sequen-
tial composition, encapsulation and abstraction; it can be obtained from P(BSPτ) by
adding parallel composition.

2.2.2 Kleene star

To be able to have regular expressions in our process algebraic framework, we add
the unary Kleene star operator (_∗) for iteration to TCPτ and obtain the theory TCP∗τ .
The Kleene star was originally defined by Kleene in [Kle56] and introduced in a
process-theoretic setting by Milner in [Mil84]. (For a discussion of the binary variant
of the Kleene star, see [BBP94].) The set of process expressions P(TCP∗τ) is generated
by the original grammar for P(TCPτ) and the following rule:

p ::= . . . | p∗ .
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To associate transition systems with TCP∗τ-process expressions we extend the opera-
tional rules from Table 2.1 with the rules in Table 2.2.

p a−−→ p′

p∗ a−−→ p′ · p∗ p∗↓

TABLE 2.2: Operational rules for the unary Kleene star (a ∈Aτ).

For the subtheory TSP∗τ the set of process expressions P(TSPτ) contains all
the processes expressions mentioned above, again without occurrences of parallel
composition, encapsulation and abstraction.

2.2.3 Axiomatisation

To be able to give concise proofs that certain process expressions are divergence-
preserving branching bisimilar, it is convenient to proceed by equational reasoning.
We shall use the equations in Table 2.3. See [BBR09] for an explanation of the
axioms, and the proof rule RSP, which is based on the assumption that every guarded
recursive specification has a unique solution. (Recall that the guardedness of the
specifications below follows from the fact that they are τ-guarded and τ-founded, as
defined in [BBP94].)

We should, of course, establish that an equational reasoning based on the axioms
in Table 2.3 is sound, i.e., that it indeed proves that the equated process expressions
are divergence-preserving branching bisimilar. For this it suffices to prove that the
axioms in Table 2.3 and RSP are sound with respect to some congruence included in
divergence-preserving branching bisimilarity. (Note that, like branching bisimilarity
is not a congruence with respect to +, divergence-preserving branching bisimilarity
is also not a congruence with respect to the operator +.) The way we obtain a
congruence included in divergence-preserving branching bisimilarity is standard: we
define a rooted version:

DEFINITION 2.16. A divergence-preserving branching bisimulation R between T1

and T2 is called rooted if it meets the following root-conditions for all a ∈ Aτ:
1. for all states s′1 ∈ S1, whenever ↑1 a−−→ s′1, then there exists a state s′2 such that
↑2 a−−→ s′2 and s′1 R s′2;

2. for all states s′2 ∈ S2, whenever ↑2 a−−→ s′2, then there exists a state s′1 such that
↑1 a−−→ s′1 and s′1 R s′2;

3. if ↑1↓1, then ↑2↓2;

4. if ↑2↓2, then ↑1↓1.
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A1 x + y = y + x A6 x + 0 = x

A2 (x + y) + z = x + (y + z) A7 0 · x = 0
A3 x + x = x A8 x · 1= x

A4 (x + y) · z = x · z + y · z A9 1 · x = x

A5 (x · y) · z = x · (y · z) A10 a.x · y = a.(x · y)

M x ‖ y = x T y + y T x + x | y B a.(τ.(x + y) + x) = a.(x + y)

LM1 0 T x = 0 SC1 x | y = y | x
LM2 1 T x = 0 SC2 x ‖ 1= x

LM3 a.x T y = a.(x ‖ y) SC3 1 | x + 1= 1
LM4 (x + y) T z = x T z + y T z SC4 (x ‖ y) ‖ z = x ‖ (y ‖ z)

CM1 0 | x = 0 SC5 (x | y) | z = x | (y | z)
CM2 (x + y) | z = x | z + y | z SC6 (x T y) T z = x T (y ‖ z)

CM3 1 | 1 = 1 SC7 (x | y) T z = x | (y T z)

CM4 a.x | 1= 0 SC8 x T 0 = x · 0
CM5 c!d.x | c?d.y = c?!d.(x ‖ y) SC9 x Tτ.y = x T y

CM6 a.x | b.y = 0 if {a, b} 6= {c!d, c?d} SC10 x | τ.y = 0

D1 ∂c(1) = 1 T1 τc(1) = 1
D2 ∂c(0) = 0 T2 τc(0) = 0
D3 ∂c(a.x) = 0 if a = c?d, c!d T3 τc(a.x) = a.τc(x) if a 6= c?d, c!d

D4 ∂c(a.x) = a.∂c(x) if a 6= c?d, c!d T4 τc(a.x) = τ.τc(x) if a = c?d, c!d

D5 ∂c(x + y) = ∂c(x)+ ∂c(y) T5 τc(x + y) = τc(x)+ τc(y)

TABLE 2.3: Axioms of the process theory TCPτ (a ∈Aτ, d ∈D).

The transition systems T1 and T2 are rooted divergence-preserving branching bisimilar
(notation: T1

↔∆
rb

T2) if there exists a divergence-preserving branching bisimulation
between T1 and T2 that meets the above mentioned root-conditions. △

In [Trč07], Trčka introduces an equivalence, called silent bisimulation, that
is an extension of branching bisimulation that preserves deadlock, is divergence
sensitive, and incorporates successful termination. As a model he uses doubly
labelled transition systems, in which also states are labelled, namely by a list of data
propositions that are satisfied. He shows that silent bisimulation is not a congruence
with respect to parallel composition in the language κ which is an extension of ACPτ
with data, scoping, guards and the Kleene star. A new equivalence is introduced
called stateless silent bisimulation, which disregards the labels of the states and
coincides with our definition of divergence-preserving branching bisimilarity. For this
equivalence it can be proved that it is a congruence.

THEOREM 2.17. Divergence-preserving branching bisimilarity is a congruence for all
operators of TCPτ. �

PROOF. We can reuse the proofs for steps 2, 3, 5, 7, and 8 of [Trč07, Theorem 4.3.7]
by disregarding the state labels. �
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Because divergence-preserving branching bisimilarity is included in rooted diver-
gence-preserving branching bisimilarity, we have the following proposition that we
will use in the proofs that use equational reasoning.

PROPOSITION 2.18. The equational theory given by Table 2.3 is sound for the model of
transition systems modulo divergence-preserving branching bisimilarity. �

PROOF. First, note that, since divergence-preserving branching bisimilarity is both an
equivalence and a congruence, it suffices to check the individual axioms. Second, it
is well-known that the axioms are sound for branching bisimilarity. So, we only need
to check the divergence-preservation conditions. Because all axioms except for B do
not remove or introduce τ-transitions whatsoever, we only need to check axiom B.
That axiom B is also sound for the divergence conditions (see conditions 5 and 6 of
Definition 2.5) follows easily from inspection of the axiom. �

Note that the KFAR rule [BBK87] is not a part of the axioms because it implies the
removal of τ-loops which would break the divergence-preserving property.

2.2.4 Greibach normal form

In some cases it is useful to have a normal form for process expressions and recursive
specifications. We will use a well-known normal form from automata theory: the
Greibach normal form, introduced by Greibach in [Gre65].

DEFINITION 2.19. A process expression p is in Greibach normal form (GNF) if there
exist a finite index set I such that

p =
∑

i∈I
ai.ξi (+ 1) ,

where ai ∈ Aτ and ξi is a sequence of names (i ∈ I). The empty sequence denotes 1,
and the empty summation denotes 0.

A recursive specification is in Greibach normal form if all right-hand sides of its
defining equations are in Greibach normal form.

We call the Greibach normal form restricted if the sequence of names have a length
of at most two. △

Classically, the GNF is used for context-free grammars, where the sequences are
sequential compositions of non-terminals. In this thesis we use the GNF as a generic
normal form. Based on the type of systems and the process theory that we are
considering, we use a different interpretation for the sequence of names. Chapter 3
uses a GNF where the sequences of names can either be empty or consist of a single
name to obtain the linear normal form. Chapter 4 interprets the sequence as a string,
a sequential composition of names, to get the sequential normal form; Chapter 5
interprets the sequence as a multiset, a parallel composition of names, to obtain the
basic parallel normal form.
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Note that recursive specifications in GNF are automatically τ-guarded. Also note
that there is a strong relation between recursive specifications in GNF and their
associated transition systems. For example, consider the following recursive TSPτ-
specification in GNF:

X
def
= a.X · Y + b.1 ,

Y
def
= c.1 .

Intuitively, when we consider the state associated with the name X in the transition
system associated with the specification, the defining equation of X lists the possible
transitions: an a-transition to a state X · Y and a b-transition to the state 1. Note that
as a result of the GNF, each state in the associated transition system is denoted by a
sequence of names.
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Chapter 3

Finite-State Systems

If we consider a computer, or, in general, a computing agent that only has a fixed
number of states and no memory except for what can be encoded in the fixed number
of states, we call this a finite-state system.

In automata theory, the most prominent way used to model these systems is by
the notion of the finite automaton. The finite automaton is used to represent the
finite control of some running program or computation, i.e. the part that manipulates
memory, interacts with the environment and can be described in a finite manner. In
the upcoming chapters we shall investigate systems that additionally have some kind
of external memory to achieve more complicated tasks. However, the finite control
will always be present to manipulate the memory.

In this chapter, we present some similarities and differences between automata
and process theory. We define well-known notions from automata theory in our
process-theoretic setting and investigate the classical results, that are shown up to
language equivalence, but now up to (divergence-preserving) branching bisimilarity.

In Section 3.1 we introduce the finite automata. We shall see that, from a
process-theoretic point of view, they are actually (non-deterministic) finite labelled
transition systems. Automata theory considers the classes of non-deterministic and
deterministic finite automata on equal footing, since they can describe the same
languages. We shall see, however, that the class of deterministic finite automata
is, up to (divergence-preserving) branching bisimilarity, a proper subclass of the class
of (non-deterministic) finite automata.

In Section 3.2 we investigate the classical correspondence between finite au-
tomata and regular grammars in a process-theoretic setting. Regular grammars
are given in our framework as finite recursive BSPτ-specifications, which we call
linear specifications. These linear specifications, having prefixing in the language,
only cover the right-linear (regular) grammars. Therefore, we also introduce linear
specifications with postfixing to cover left-linear (regular) grammars. We shall
see, however, that, up to (divergence-preserving) branching bisimilarity, the class
of linear specifications is incomparable with the class of linear specifications with
postfixing. We explore the tight correspondence between linear specifications and
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finite automata for introductory purposes, as the classical correspondence result
between right-linear grammars and finite automata holds even up to isomorphism.

Another prominent correspondence that comes to mind when discussing finite
automata is regular expressions. A few decades ago, Milner showed in [Mil84]
that up to bisimilarity not all finite automata can be given by a regular expression.
In Section 3.3 we extend the language of regular expressions, which we give as
closed TSP∗τ-process expressions, with communication and obtain closed TCP∗τ-
process expressions. We show that we can give a closed TCP∗τ-process expression that
describes each finite automaton up to (divergence-preserving) branching bisimilarity.

This chapter is mainly based on the following publications:

[BCLT10] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. “A
Process-Theoretic Look at Automata”. In: Proceedings of FSEN 2009. Ed.
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1–33.

[BLT11a] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. “Computations and
Interaction”. In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A.
Ojo. LNCS 6536. Springer, 2011, pp. 35–54.

Some material has also been adapted from the following lecture notes and publica-
tion:

[Bae11] J. C. M. Baeten. Models of Computation: Automata and Processes.
Lecture notes 2011.

[BLMT10] J. C. M. Baeten, B. Luttik, T. Muller, and P. J. A. van Tilburg. “Ex-
pressiveness modulo Bisimilarity of Regular Expressions with Parallel
Composition (extended abstract)”. In: Proceedings of EXPRESS 2010.
Ed. by S. B. Fröschle and F. D. Valencia. EPTCS 41. Open Publishing
Association, 2011, pp. 1–15.

3.1 Finite Automata

In Definition 2.1 (on page 9) we have defined the notion of transition systems, the
central model of process theory. The central notion of automata theory, the finite
automaton, is strongly related to this model. For the finite automaton is just a
transition system with a fixed, finite number of states and a finite transition relation,
or: finite control.

DEFINITION 3.1. A finite automaton M is defined as a five-tuple (S,A,→,↑,↓) where:

1. S is a finite set of states,

2. A is a finite set of actions,

3. → ⊆ S×Aτ × S is a finite Aτ-labelled transition relation on S,

4. ↑ ∈ S is the initial state,

5. ↓ ⊆ S is the set of final states. △

Clearly, from a finite automaton we obtain a transition system by simply omitting
A from the five-tuple and declaring→ to be an Aτ-labelled transition relation. In the
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3.1. FINITE AUTOMATA

remainder of this paper there is no need to make the formal distinction between a
finite automaton and the transition system associated with it.

EXAMPLE 3.2. Two examples of finite automata are given in Figure 3.1. The lower
automata is a “cleaned up” version (with respect to bisimilarity) of the upper
automata where the unreachable state y and inert τ-transitions are removed. ♦

s

t u v

w x y

c

a

a a

a

ττ

b

b

s t

u v

x

a

a

a

a
b

b

FIGURE 3.1: Two examples of finite automata.

In the theory of automata and formal languages, finite automata are considered
as language acceptors. Recall that a finite automaton is a special kind of transition
system, so Definition 2.3 (on page 10) applies directly to finite automata. The
language of both automata in Figure 3.1 is {ab2naa | n≥ 0} ∪ {ab2n−1 | n≥ 1}.

DEFINITION 3.3. A language L ⊆A
∗ accepted by a finite automaton is called a regular

language. △

Recall Definition 2.6 (on page 11) that defines processes as divergence-preserving
branching bisimilarity equivalence classes of transition systems. If we consider finite-
state systems, we are only interested in transition systems that are divergence-
preserving branching bisimilar with a finite automaton.

DEFINITION 3.4. A finite-state process is a divergence-preserving branching bisimilar-
ity class of transition systems that contains a finite automaton. △

Deterministic finite automata

In the upper automaton in Figure 3.1 it is not determined in which state the
automaton is after performing an a-transition from the initial state. So, the notion of
finite automaton defined in Definition 3.1 allows for non-determinism; it is actually
the definition of a non-deterministic finite automaton (NFA).
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However, in automata theory the deterministic finite automaton (DFA), a special
case of the NFA, also plays a prominent role, for example for parsing.

DEFINITION 3.5. A finite automaton M = (S,A,→,↑,↓) is deterministic if, for all states
s, t1, t2 ∈ S and for all actions a ∈ A, s−−։ a−−→t1 and s−−։ a−−→t2 implies t1 = t2. △

In the theory of automata and formal languages, it is usually also required in the
definition of the deterministic finite automaton that the transition relation is total in
the sense that for all s ∈ S and for all a ∈ A there exists t ∈ S such that s a−−→ t. The
extra requirement is clearly only sensible in the language interpretation of automata;
we shall not be concerned with it here.

The upper automaton in Figure 3.1 is non-deterministic and has an unreachable
c-transition. The lower automaton is deterministic and does not have unreachable
transitions; it is not total.

Up to language equivalence deterministic and non-deterministic automata accept
the same languages. See e.g. [HMU06, Theorem 2.12] for a proof of the following
theorem.

THEOREM 3.6. A language L is accepted by some DFA if and only if L is accepted by some
NFA. �

This theorem does not hold if we want to have the result up to branching
bisimilarity instead of language equivalence, as is illustrated by the following
example.

EXAMPLE 3.7. There exists a finite automaton such that there exists no deterministic
finite automaton that is branching bisimilar with it. See Figure 3.2 for such a finite
automaton. ♦

a

a

FIGURE 3.2: An example NFA that is not branching bisimilar to any DFA.

Therefore, the class of deterministic finite automata is, up to branching bisimi-
larity, a proper subclass of the class of finite automata. Because non-determinism is
relevant and basic in process theory, we shall not particularly consider deterministic
finite automata in our process-theoretic setting from here on.

In automata theory, automata can have silent transitions, usually labelled by ε
(in [Sip97, HMU06]) or λ (in [Sud88, Lin01]). We prefer the label τ from
process theory over ε and λ to denote silent, unobservable transitions. While many
automata theory textbooks give procedures to remove τ-transitions, up to language
equivalence, and this is clearly not possible up to (divergence-preserving) branching
bisimilarity. Recall that only inert τ-transitions can be removed (see Definition 2.8
and Example 2.9 on page 12).
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3.2 Linear Specifications

In the theory of automata and formal languages, the notion of a grammar is used
as a syntactic mechanism to describe languages. Grammars were first proposed by
Chomsky in [Cho56]. In this chapter, we consider regular grammars, i.e. left- or
right-linear grammars, because we are dealing with finite-state systems and finite
automata.

Recall that linear grammar are grammars where each right-hand side of a
production rule has at most one name. A grammar is right-linear, when this single
name is at the right end, left-linear when it is at the left end. We call a grammar
regular if it is either left- or right-linear.

EXAMPLE 3.8. The following regular grammars generate the language {ab2n | n≥ 0}.

Left-linear:

S→ Sbb | a

Right-linear:

S→ aT

T→ bbT | ε ♦

The corresponding mechanism in concurrency theory is the notion of recursive
specification. For the kind of grammars we are considering, we shall use the process
theory BSPτ (Basic Sequential Processes), which is a subtheory of the theory TCPτ
introduced in Section 2.2. The syntax of the process theory BSPτ is obtained from
that of TCPτ by omitting sequential composition, parallel composition, encapsulation
and abstraction.

DEFINITION 3.9. A linear specification over some finite set of names N is a finite, τ-
guarded recursive BSPτ-specification, i.e. a recursive specification over N in which
only 0, 1, N (N ∈ N), a._ (a ∈ Aτ) and _ + _ are used to build linear process
expressions. △

It turns out that getting the corresponding linear specification of a right-linear
grammar is actually just a matter of changing notation. (We will consider left-linear
grammars later on.)

EXAMPLE 3.10. The linear specification that corresponds to the right-linear grammar
in Example 3.8 can be given as follows:

S
def
= a.T ,

T
def
= b.b.T + 1 .

Production rules have been replaced by defining equations, where the production

symbols→ have been replaced by the defined-as symbol
def
=, non-terminals by names,

terminals by prefixing operations a._, multiple rules for a name by summands of an
alternative composition and the empty symbol ε by the empty process 1. ♦
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Additionally, not shown by the example, the absence of a production rule for some

non-terminal X is replaced by the equation X
def
= 0.

Due to the tight relation between linear specifications and right-linear grammars,
we can reuse some of the standard procedures, defined for grammars, on recursive
specifications. For example, the procedure for associating a linear specification with
a finite automaton is discussed next.

3.2.1 Correspondence

In automata theory the following result gives a direct correspondence between finite
automata and regular grammars.

THEOREM 3.11. A language L is regular iff there exists a regular (right-linear) grammar
that generates L. �

The classical proof for this theorem uses in one direction the fact that every regular
language is accepted by some (deterministic) finite automaton and gives an algorithm
to construct a grammar for this automaton (see, e.g., [Lin01, Theorem 3.4]). In
the other direction it can be shown that a finite automaton can be associated with
each right-linear grammar (see, e.g., [Lin01, Theorem 3.3]). The proofs hold up
to isomorphism for both directions. As the correspondence between specification
language and automaton will come up again in subsequent chapters, we repeat the
classical proof for illustration purposes in a more process-theoretic setting.

We use the linear specifications defined above as counterparts of right-linear
grammars and investigate their associated transition systems. Consider the opera-
tional rules in Table 2.1 (on page 15) that are relevant for BSPτ, for a presupposed
recursive specification E. Note that whenever p is a BSPτ-process expression and
p a−−→q then q is again a BSPτ-process expression. Moreover, q is a subterm of p, or q is
a subterm of a right-hand side of the recursive specification E. Thus, it follows that the
set of process expressions reachable from a BSPτ-process expression consists merely
of BSPτ-process expressions, and that it is finite. So the transition system TE(p)

associated with a BSPτ-process expression given a recursive BSPτ-specification E is a
finite automaton.

Below we shall also establish the converse, that every finite automaton can
be specified, up to isomorphism, by a linear specification. First we illustrate the
construction with an example.

EXAMPLE 3.12. Consider the automaton depicted in Figure 3.3 below.
Note that we have labelled each state of the automaton with a unique name; these

will be the names of a recursive specification E. We will define each of these names
with an equation, in such a way that the transition system TE(S) generated by the
operational semantics in Table 2.1 (on page 15) is isomorphic and hence (divergence-
preserving) branching bisimilar with the automaton in Figure 3.3.
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S T

U

V

a

b

a

a

a

FIGURE 3.3: Another example of a finite automaton.

The recursive specification for the finite automaton in Figure 3.3 is:

S
def
= a.T ,

T
def
= a.U+ b.V ,

U
def
= a.T + a.V + 1 ,

V
def
= 0 .

The action prefix a.T on the right-hand side of the equation defining S is used to
express that S has an a-transition to T. Alternative composition is used on the
right-hand side of the defining equation for T to combine the two transitions going
out from T. The 1-summand on the right-hand side of the defining equation for U

indicates that U is a final state. The symbol 0 on the right-hand side of the defining
equation for V expresses that V is a deadlock state. ♦

We can now give the following correspondence result between finite automata
and linear specifications.

THEOREM 3.13. For every finite automaton M there exists a linear specification E, with
initial name I, such that TE(I)↔∆

b
M. �

PROOF. The general procedure is clear from Example 3.12. Let M = (S,A,→,↑,↓)
be some finite automaton. We associate with every state s ∈ S a name Ns , and
define a recursive specification E on {Ns | s ∈ S } with initial name N↑ . The recursive
specification E consists of equations of the form

Ns

def
=
∑

(s,a,t)∈→
a.Nt [+ 1]s↓ ,

with the convention that the summation denotes 0 if there are no transitions from
state s, and the optional 1-summand is present if, and only if, s↓. It is easily verified
that the binary relation R = { (s,Ns) | s ∈ S } is a (divergence-preserving) branching
bisimulation. �

Incidentally, note that the relation R in the proof of the above theorem is an
isomorphism, so the proof actually establishes that for every finite automaton M there
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exists a recursive BSPτ-specification E and a BSPτ-process expression p such that the
transition system associated with p and E is isomorphic to M.

Linear specifications that are constructed in the way shown in the theorem
above are in the linear normal form. We instantiate the definition of the GNF (see
Definition 2.19 on page 19) and restrict the sequences to a length of at most one.

DEFINITION 3.14. A linear specification E is in linear normal form if each defining
equation of name N ∈ N is of the following form:

N
def

=
∑

i∈IN

ai.Ni (+ 1) .

In this form, every right-hand side of every defining equation consists of a number of
summands, indexed by a finite set IN (the empty sum is 0), each of which is 1, or of
the form ai.Ni with ai ∈Aτ. △

All linear specifications can be brought into linear normal form.

PROPOSITION 3.15. For each linear specification E and linear process expression p there
exists a linear specification in linear normal form E′ such that TE′(p)↔∆

b
TE(p). �

Theorem 3.13 can be viewed as the process-theoretic counterpart of the result
from the theory of automata and formal languages that states that every language
accepted by a finite automaton is generated by a right-linear grammar. There is
no reasonable process-theoretic counterpart of the similar result in the theory of
automata and formal languages that every language accepted by a finite automaton
is generated by a left-linear grammar, as we shall now explain.

Linear Specifications with Postfixing

To obtain the process-theoretic counterpart of a left-linear grammar, we should
replace the action prefixes a._ in BSPτ by action postfixes _.a, with the operational
rules in Table 3.1. We call this variant: linear specifications with postfixing.

p b−−→ p′

p.a b−−→ p′.a

p↓
p.a a−−→ 1

TABLE 3.1: Operational rules for action postfix operators (a, b ∈Aτ).

Analogously with linear specifications, we can define a normal form.
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DEFINITION 3.16. A linear specification with postfixing E is in reversed linear normal
form if each defining equation of name N ∈N is of the following form:

N
def
=
∑

i∈IN

Ni.ai (+ 1) .

In this form, every right-hand side of every defining equation consists of a number of
summands, indexed by finite sets IN (the empty sum denotes 0), each of which is 1,
or of the form Ni.ai with ai ∈Aτ. △

Note that, if the specification contains names on the right-hand sides, it is unguarded
by definition.

Analogously with linear specifications, action postfix distributes over alternative
composition and is absorbed by 0. It is easy to see that the following holds.

PROPOSITION 3.17. For each linear specification with postfixing E and process expres-
sion p there exists a linear specification with postfixing in reversed linear normal form E′

such that TE′(p)↔∆
b
TE(p). �

Given a specification in reversed linear normal form, let p be a process expression
which will be of the following form:

p =
∑

i∈I
Ni.wi +
∑

j∈J
1.w j (+ 1) .

By the operation rules we have that if p a−−→ p′, then p′↔b w for some sequence
of postfixes w ∈ A

∗. (This is because we need to recursively unfold the definition
of each name in order to actually perform a transition.) Note that we immediately
lose the name in the expression after a transition, and therefore also any form of
recursion. Clearly, there exist finite automata that cannot be denoted, up to branching
bisimilarity, by a process expression with this property.

EXAMPLE 3.18. Consider for example the finite automaton in Figure 3.4. A process
expression denoting it cannot have the above property, for after performing an
a-transition there is still a choice between terminating with a b-transition, or
performing another a-transition.

a

b

FIGURE 3.4: A finite automaton without a linear specification with postfixing.

We conclude that the automaton in Figure 3.4 cannot be described modulo
branching bisimilarity in BSPτ with action postfix instead of action prefix. ♦

Conversely, with action postfixes instead of action prefixes in the syntax, it is
possible to specify transition systems that are not branching bisimilar with a finite
automaton.
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EXAMPLE 3.19. For instance, consider the recursive specification E over {X } consist-
ing of the equation

X
def
= 1+ X.a .

The transition system associated with X by the operational semantics is depicted in
Figure 3.5. Note that in this figure, the initial state is also final.

a
a

a a

aaa

a

a
FIGURE 3.5: Infinitely branching transition system associated with an un-

guarded specification.

It can be proved that the infinitely many states of the depicted transition systems
are all distinct modulo branching bisimilarity: each of the states in the bottom in
Figure 3.5 has a different norm. It follows that the transition system associated with E

is not branching bisimilar to a finite automaton. ♦

We conclude that the classes of processes defined by linear specifications and
linear specifications with postfixing do not coincide.

3.3 Regular Expressions

In the previous section we have investigated the classical correspondence results
between NFA, DFA and grammars in a process-theoretic setting. In automata theory
there is a fourth way to describe a regular language: the regular expressions. Instead
of the recursion present in regular specifications, regular expressions include the
(unary) Kleene star _∗ in their syntax, as introduced by Kleene in [Kle56] to capture
repetition in regular behaviours. To obtain regular expressions in our process-
theoretic setting, we use an extension of the process theory TSPτ with the unary
Kleene star called TSP∗τ . (See Table 2.2 on page 17 for the operational rules for the
unary Kleene star.)

DEFINITION 3.20. We call a closed TSP∗τ-process expression a regular expression. △

From an automata and formal language point of view the 0 represents the empty
language, 1 the empty word or string, and the prefix and alternative composition
have their usual meaning.

EXAMPLE 3.21. The regular expression a.(b.b.1)∗ · (a.a.1 + b.1) has an associated
transition system that is divergence-preserving branching bisimilar with the finite
automata in Figure 3.1. ♦
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Kleene established in [Kle56] a correspondence between the languages denoted
by regular expressions and the languages accepted by finite automata.

THEOREM 3.22. For every DFA M, there exists a regular expression R such that L(R) =
L(M), and for every regular expression R there exists an NFA M such that L(M) = L(R).�

For the proof in one direction it is assumed that there is some DFA that accepts
the language L and then a construction is given that generates a regular expression
from the DFA. In the other direction, an NFA is associated with a regular expression.
This NFA accepts, by definition, a regular language.

Milner, in [Mil84], showed how regular expressions can be used to describe
behaviour by directly associating finite automata with them. He then observed that
the process-theoretic counterpart of Kleene’s theorem fails: there exist finite automata
whose behaviours cannot faithfully, i.e., up to bisimilarity, be described by regular
expressions. We show a simple example in Figure 3.6 of a finite transition system
that is not bisimilar to any transition system that can be associated with a regular
expression.

a

b

FIGURE 3.6: A finite automaton that has no regular expression up to
bisimilarity.

Baeten, Corradini and Grabmayer present in [BCG07] a structural property on
finite automata and shown that for the subclass adhering to this property, the so-
called well-behaved finite automata, it is possible to find a corresponding regular
expression up to bisimilarity.

3.3.1 Correspondence

If we want a full correspondence with the class of finite automata, a different
approach is required. We present a solution originally published in [BLMT10] where
we extend the regular expressions with well-known operators from process theory,
parallel composition with communication and encapsulation, and obtain the desired
correspondence result between finite automata and closed TCP∗τ-process expressions.
We shall refer to these expressions as extended regular expressions

Before we give the actual correspondence result, we show the construction by
means of an example. The extended regular expression that we shall associate with
the finite automaton will have one parallel component per state of the automaton,
representing the behaviour of that state (i.e., which outgoing transitions it has to
which other states and whether it is terminating). At any time, one of the parallel
components corresponding with the “current state” has control. An a-transition
from that current state to a next state corresponds with a communication between
the two components yielding the actual a-action. Instead of using the predefined
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communication function that we have defined in Section 2.2 we shall use a different,
specific communication function for the purposes of this section.

EXAMPLE 3.23. Consider the finite automaton in Figure 3.7 below.

s0 s1

s2 s3

a, b
b

c
a

b

FIGURE 3.7: A finite automaton.

We associate with every state si an expression pi as follows:

p0 =
�

enter0.1 · (leavea,1.1+ leaveb ,1.1)
�∗ ,

p1 =
�

enter1.1 · (b.1)∗ · leavec,2.1
�∗ ,

p2 =
�

enter2.1 · (leavea,0.1+ leaveb ,3.1+ 1)
�∗ ,

p3 =
�
enter3.1 · 0
�∗ .

By executing an enteri-transition a parallel component pi can gain control, and
by executing a leaveα,j-transition it may then release control to pj with action α (α ∈
{a,b, c }) as result. Note that loops in the automaton (such as the loop on state s1)
require special treatment as they should not release control to some other state while
executing the loop.

We define the communication function in such a way that an enteri action
communicates with a leaveα,i action, resulting in the action α. In the case of the
example, γ is defined as follows:

γ(enter0, leavea,0) = γ(leavea,0, enter0) = a ,

γ(enter1, leavea,1) = γ(leavea,1, enter1) = a ,

γ(enter1, leaveb,1) = γ(leaveb,1, enter1) = b ,

γ(enter2, leavec,2) = γ(leavec,2, enter2) = c ,

γ(enter3, leaveb,3) = γ(leaveb,3, enter3) = b ,

and it is left undefined otherwise.
Now, let p′0 be the resulting expression after executing the enter0-transition from p0

(thus gaining control as “current state”), i.e.,

p′0 = 1 · (leave0,1.1+ leave1,1.1) · p0 .

We define the extended regular expression that simulates the finite automaton in
Figure 3.7 as the parallel composition of p′0, p1, p2, and p3, encapsulating the control
actions enteri and leavek,i, i.e.,

∂{ enteri,leavek,i|0≤i≤3, 0≤k≤2 }(p
′
0
‖ p1 ‖ p2 ‖ p3) . ♦
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Note that the process expressions that are associated with each state are even
TSP∗τ-process expressions, i.e. common regular expressions. We have just added
parallelism with communication and encapsulation to obtain the correspondence.

We now present the technique illustrated in the preceding example in full
generality. Let M = (S,A,→, s0,↓) be a finite automaton, let S = { s0, . . . , sn }, and let
A= {a0, . . . ,am } be the set of actions occurring on transitions in M. We shall associate
with M an extended regular expression pM that has one parallel component pi for
every state si in S. To allow a parallel component to gain and release control, we use
a collection of control actions AC assumed to be disjoint from A, that is defined as

AC = { enteri | 0≤ i ≤ n} ∪ { leavek,i | 0≤ i ≤ n, 0≤ k ≤ m } .

Gaining and releasing control is modelled by the communication function γ on A∪AC

satisfying:

γ(enteri, leavek,j) = γ(leavek,j, enteri) =

¨
ak if i = j; and

undefined otherwise.

For the specification of the extended regular expressions pi we need one more
definition: for 0 ≤ i, j ≤ n we denote by Ki, j the set of indices of actions occurring as
the label on a transition from si to sj, i.e.,

Ki, j = { k | si
ak−−→ sj } .

Now we can specify the extended regular expressions pi (0≤ i ≤ n) by

pi = 1·
�

enteri.1 ·
� ∑

k∈Ki,i

ak.1
�
·
� ∑

1≤ j≤n
j 6=i

∑

k∈Ki, j

leavek,j.1 [+ 1]si↓
��∗ .

By [+ 1]si↓ we mean that the summand + 1 is conditional; it is only included if si↓.
The empty summation denotes 0. (We let pi start with 1 to yield a finite automaton
associated with pM which is isomorphic and not just bisimilar with M.)

Note that the parallel component with process expression pi has a unique
transition to gain control, i.e. pi

enteri−−−→ p′i , where p′i denotes:

p′i = 1 ·
� ∑

k∈Ki,i

ak.1
�∗ ·
� ∑

0≤ j≤n
j 6=i

∑

k∈Ki, j

leavek,j.1 [+ 1]si↓
�
· pi .

Assuming that s0 is the initial state, we now define pM by

pM = ∂AC
(p′0 ‖ p1 ‖ · · · ‖ pn) .

Clearly, the construction of pM works for every finite automaton M. The bijection
defined by si 7→ ∂AC

(p0 ‖ · · · ‖ pi−1 ‖ p′i ‖ pi+1 ‖ · · · ‖ pn) is an isomorphism between M

and the automaton associated with pM by the operational semantics (see Table 2.1 on
page 15). We shall refer to pM as the extended regular expression describing M.
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THEOREM 3.24. For every finite automaton M there exists a handshaking communi-
cation function γ and extended regular expression pM such that the transition system
associated with pM is isomorphic with M. �

PROOF. The bijection defined by si 7→ ∂AC
(p0 ‖ · · · ‖ pi−1 ‖ p′i ‖ pi+1 ‖ · · · ‖ pn) for all

1 ≤ i ≤ |S| is an isomorphism from M to the automaton associated with pM by the
operational semantics in TCP∗τ . �

3.4 Conclusions

In this chapter we have investigated the classical correspondence results between the
four ways to describe regular languages: NFAs, DFAs, regular grammars and regular
expressions. These results can be found in any automata and formal language theory
book [Sud88, Sip97, HMU06]; most results are up to isomorphism, but some are up
to language equivalence. See Figure 3.8 for a schematic overview.

DFAs

NFAs regular

grammars

regular
expressions

Thm. 3.11

Thm. 3.22

Thm.
3.6

FIGURE 3.8: Classical correspondence results from automata theory.

When we considered these results from a process-theoretic perspective, we have
seen that a finite automaton is a finite transition system. Up to bisimilarity the class
of deterministic finite automata is smaller than the class of non-deterministic finite
automata.

We have seen how regular grammars can be given as linear specifications. This,
however, only covers the definition of the right-linear grammars. We can define left-
linear grammars as linear specifications with postfixing if we replace the prefixing
operations by postfix operations. However, we then get a different class up to
branching bisimilarity. As it turns out, there is a full correspondence between finite
automata and linear specifications up to branching bisimilarity.

Regular expressions are closed TSP∗τ-process expressions. However, only the
(proper) subclass of well-behaved finite automata can be expressed by regular
expressions up to branching bisimilarity. We have extended the syntax of the
regular expressions with operators from process theory (parallel composition and
encapsulation) to obtain extended regular expressions and we have shown that there
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is a full correspondence with finite automata. Interestingly, the construction only
needs communication on top of usual regular expressions to work.

Figure 3.9 presents a schematic overview of the correspondence results from
a process-theoretic point of view. Note that the correspondence between linear
specifications and extended regular expressions is obtained indirectly via the finite
automata.

NFAs

DFAs

linear
specifications

with postfix-

ing

extended
regular
expressions

regular
expressions

well-behaved

Thm. 3.13

SOS

Thm. 3.24

SOS

SOS
[BCG07]

FIGURE 3.9: Correspondence results from a process-theoretic perspective.

In the following chapters we often will see that the classical correspondence
results cannot be obtained up to branching bisimilarity or that notions such as
context-free or unrestricted grammars do not have a direct process-theoretic version.
Instead of loosening restrictions on the syntax or relinquish our strong equivalences
to try to reobtain (parts of) the results, we shall extend the syntax with operators
that are typically from process theory, such as parallel composition, communication,
encapsulation and abstraction.
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Chapter 4

Pushdown Systems

In automata and formal language theory it is common practise to characterise
languages by means of a finite-state automaton, representing some finite control,
which is often augmented by some kind of memory. See for example [Sud88, Sip97,
HMU06]. If this memory is absent, the finite-state automata describe the class of
regular languages. In case we have a tape as memory, which in fact provides random
access to its data, we obtain all recursively enumerable languages. In this chapter we
consider finite-state automata augmented with a limited type of memory: a stack. The
combination of a finite-state automaton and a stack is called a pushdown automaton.

A classical result in automata and formal language theory is that for every context-
free grammar there is a pushdown automaton that describes the same language
and vice versa. However, by using this equivalence the language-theoretic approach
abstracts from moments of choice and is unsuitable if some form of interaction with
the automaton may influence its behaviour. In this chapter we use a process-theoretic
approach and give semantics to the pushdown automata by means of associated
transition systems. Using the more fine-grained divergence-preserving branching
bisimulation equivalence we shall revisit some results from automata theory, amongst
which the classical result mentioned previously.

In Section 4.1 we define the pushdown automaton and its associated pushdown
transition system. We shall see that up to (divergence-preserving) branching bisim-
ilarity it matters how these notions are defined. The definition of the associated
pushdown transition system is given for different termination conditions: termination
on final state, on empty stack, and on both final state and empty stack. While these
alternative definitions lead to pushdown transition systems that describe the same
languages, this is not the case up to (divergence-preserving) branching bisimilarity.
We shall compare the different classes of pushdown automata and show that, up
to divergence-preserving branching bisimilarity, the class of pushdown transition
systems with termination on both final state and empty stack is a proper subclass
of the class with termination on final state, and that the class with termination on
empty stack is in turn a proper subclass of the class with termination on both final
state and empty stack. For the pushdown automata that have an initial state that
is also final, the class with termination on empty stack coincides, up to divergence-
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branching bisimilarity, with the class with termination on both final state and empty
stack.

In Section 4.2 we investigate the classical correspondence result between push-
down automata and context-free grammars in a process-theoretic setting. Context-
free grammars are given as finite recursive TSPτ-specifications, which we call
sequential specifications. The choice of TSPτ as an extension of BSPτ is a natural one
within our framework, as it adds sequential composition to our linear specifications.
However, we will see in this chapter that having both sequential composition and the
empty process in the specification language causes problems. We will show that only
the class of pushdown automata with termination on (final state and) empty stack
allows us to obtain a process-theoretic version of the classical correspondence result
between pushdown automata and sequential specifications.

It turns out that transition systems associated with sequential specifications can
have an unbounded branching degree. We conjecture that in this case there is no
correspondence, up to branching bisimilarity, with (associated transition systems of)
pushdown automata. We shall therefore propose a restriction on the sequential spec-
ifications to get a correspondence with the pushdown automata. As a result, we will
discover that these restricted sequential specifications have a correspondence with
just a subclass of the pushdown automata, the so-called pop choice-free automata.
We will henceforth show that for this subclass there is also a correspondence in the
other direction, i.e. with the restricted sequential specifications.

Next, we will investigate the decidability of bisimilarity on processes defined
by sequential specifications. We obtain our result by extending earlier results for
recursive BPA- and BPA0-specifications, which are specifications in subtheories of
TSPτ. It is well-known that it is undecidable whether two context-free grammars
generate the same language up to language equivalence. We prove that bisimilarity
is decidable on the subclass of transition systems definable by the earlier mentioned
restricted sequential specifications, a class that properly includes the BPA0-definable
transition systems.

In Section 4.3 we define the pushdown automata terminating on (final state and)
empty stack by giving a finite recursive TCPτ-specification consisting of a linear
specification representing the finite control and a specification of a stack process.
The stack itself is defined by a (restricted) sequential specification and may therefore
be considered as the canonical process for this class of specifications. We show
that, when these specifications are put in parallel, the associated transition system
is divergence-preserving branching bisimilar with the transition system associated
with the pushdown automaton. This way we make the communication between the
finite control and the stack within a pushdown automaton explicit.

We cannot obtain the same result for pushdown automata terminating on final
state using the solution above. We will show that the stack process mentioned
previously cannot be reused in this setting if we want to have the result up to
(divergence-preserving) branching bisimilarity. So, for this to work, we would need
a stack process that can terminate regardless of its contents. We will therefore
introduce a new stack process: the always-terminating stack. When we put this new
stack process in parallel with the earlier specification of finite control, we can show
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that the associated transition system is divergence-preserving branching bisimilar
with the transition system associated with the pushdown automaton terminating on
final state.

This chapter is mainly based on the following publications:

[BCLT10] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. “A
Process-Theoretic Look at Automata”. In: Proceedings of FSEN 2009. Ed.
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1–33.

[BLT11a] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. “Computations and
Interaction”. In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A.
Ojo. LNCS 6536. Springer, 2011, pp. 35–54.

Some material is also inspired on or adapted from the following lecture notes and
publication:

[Bae11] J. C. M. Baeten. Models of Computation: Automata and Processes. Lecture
notes 2011.

[BCT08] J. C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. “A Context-Free
Process as a Pushdown Automaton”. In: Proceedings of CONCUR 2008.
Ed. by F. van Breugel and M. Chechik. LNCS 5201. Springer, 2008,
pp. 98–113.

4.1 Pushdown Automata

As an intermediate notion between finite automata and Turing machines, the theory
of automata and formal languages treats pushdown automata, which are finite
automata extended with a stack as memory. Several definitions of the notion appear
in the literature [Sud88, Sip97, HMU06], which are all equivalent in the sense that
different kinds of pushdown automata still accept the same (class of) languages.

Recall the definition of a finite set of actions A and a finite set of data elements D.
We add to D the special symbol ⊥ to indicate that a stack is empty, assuming that
⊥ 6∈ D; we denote the set D ∪ {⊥} of stack symbols by D⊥. We denote sequences
of data symbols (or strings) by D

∗ and sequences of stack symbols by D
∗
⊥; we often

use δ and ζ to range over D∗ or D∗⊥ and ǫ to denote the empty string.

DEFINITION 4.1. A pushdown automaton (PDA) M is defined as a six-tuple
(S,A,D,→,↑,↓) where:

1. S is a finite set of states;

2. A a finite set of actions;

3. D a finite set of data;

4. → ⊆ S×Aτ×D⊥×D
∗× S is an Aτ×D⊥ ×D

∗-labelled transition relation on S,

5. ↑ ∈ S is the initial state, and

6. ↓ ⊆ S is the set of final states. △

If (s,a, d,δ, t) ∈→, we write s a[d/δ]−−−−→ t. The intuitive meaning of such a transition
is that if the pushdown automaton M is in state s and data element d is on the top
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of the stack, then it can pop d while performing the action a, pushing the string of
data elements δ on top of the stack and moving to state t. In the case that d = ⊥, the
meaning of the transition s a[⊥/δ]−−−−→ t is an empty-test such that when the pushdown
automaton M is in state s and the stack is empty, the action a can be performed,
the string of data elements δ is pushed onto the stack and the automaton moves to
state t. Transitions of the form s τ[d/δ]−−−−→ t and s τ[⊥/δ]−−−−→ s are silent/unobservable
transitions of the pushdown automaton that just modify the stack contents.

When considering a pushdown automaton as a language acceptor, it is generally
assumed that it starts in its initial state with an empty stack. (Actually, the definition
of a PDA in [HMU06, Section 6.1.2] starts in the initial state with a fresh special
stack empty symbol Z0 on the stack which must be removed before terminating. As
this removal action will always introduce a choice, by definition of this PDA it is not
allowed to put the symbol Z0 back, it is undesirable from a process-theoretic point of
view. Hence, we have deemed it necessary to introduce the empty-test transition.) A
computation consists of repeatedly consuming input symbols (or just modifying stack
contents without consuming input symbols). When it comes to determining whether
or not to accept an input word there are two approaches: “acceptance by final state”
(FS) and “acceptance by empty stack” (ES). The first approach accepts a word if the
pushdown automaton can move to a configuration with a final state by consuming the
word, ignoring the contents of the stack in this configuration. The second approach
accepts the word if the pushdown automaton can move to a configuration with an
empty stack, ignoring whether the state of this configuration is final or not. Both
approaches are equally powerful from a language-theoretic point of view, but not
from a process-theoretic point of view, as we shall see below. We shall also consider a
third approach in which a configuration is terminating if it consists of a terminating
state and an empty stack (FSES). We will see in Section 4.1.1 that, from a process-
theoretic point of view, the FS, FSES and ES approaches all lead to different notions
of transition systems up to (divergence-preserving) branching bisimilarity.

EXAMPLE 4.2. Assume that A = {a,b } and D= {1 }. The state-transition diagram in
Figure 4.1 specifies a pushdown automaton that first can perform a series of a-actions
while stacking the data element 1 for each a-action in the state s. Then, it can switch
to state t by performing a b-action and removing a data element 1 from the stack
followed by performing as many b-actions as there are data elements 1 on the stack.

s t

a[⊥/1]
a[1/11]

b[1/ǫ]

b[1/ǫ]

FIGURE 4.1: An example of a pushdown automaton.

Depending on the adopted acceptance condition, the pushdown automaton in
Figure 4.1 accepts either the language {anbm | n ≥ m ≥ 0} (FS) or the language
{anbn | n≥ 0} (FSES or ES). ♦
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To formalise the intuitive behaviour of pushdown automata, we associate with
every PDA M a transition system T(M). For the states of this associated transition
system we use configurations defined as follows.

DEFINITION 4.3. A configuration of a pushdown automaton M is a pair (s,δ)
consisting of a state s ∈ S, and stack contents δ ∈ D

∗. The left-most data element
of δ represents the top of the stack. △

The associated transition system semantics of PDAs defines an Aτ-labelled
transition relation on configurations such that a PDA-transition s a[d/δ]−−−−→ t corresponds
with an a-labelled transition from a configuration consisting of the PDA-state s and
stack contents dζ. The transition leads to a configuration consisting of the PDA-state t

and the stack contents δζ, i.e. the original stack contents with the top element d

replaced by δ. A PDA-transition s a[⊥/δ]−−−−→ t corresponds with an a-labelled transition
from a configuration consisting of the PDA-state s and an empty stack, leading to a
configuration of the PDA-state t and the stack contents δ.

DEFINITION 4.4. Let M = (S,A,D,→,↑,↓) be a pushdown automaton. The transition
system T(M) associated with M is defined as follows:

1. the set of states of T(M) is the set of configurations S ×D
∗;

2. the transition relation of T(M) satisfies

a) (s, dζ) a−−→ (t,δζ) iff s a[d/δ]−−−−→ t for all s, t ∈ S, a ∈ Aτ, d ∈ D, δ,ζ ∈ D
∗,

and

b) (s,ǫ) a−−→ (t,δ) iff s a[⊥/δ]−−−−→ t;

3. the initial state of T(M) is (↑,ǫ); and

4. for the set of final states ↓ we consider three alternative termination condition:

a) (s,ζ)↓ in T(M) iff s↓ (the FS interpretation),

b) (s,ζ)↓ in T(M) iff ζ = ǫ (the ES interpretation), and

c) (s,ζ)↓ in T(M) iff s↓ and ζ = ǫ (the FSES interpretation).

A transition system is a pushdown transition system (according to the FS/ES/FSES
interpretation) if it is associated with a PDA. △

EXAMPLE 4.5. Recall the example PDA in Figure 4.1. The transition system as-
sociated with this PDA (according to the ES or FSES interpretation) is shown in
Figure 4.2. ♦

(s,ǫ) (s, 1) (s, 11) (s, 111)

(t,ǫ) (t, 1) (t, 11)

a a a a

b b b

bbb

FIGURE 4.2: The transition system associated with the example PDA according
to the (FS)ES interpretation.
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This definition now gives us the notions of pushdown language and pushdown
process (according to the FS/FSES/ES interpretation).

DEFINITION 4.6. A language accepted by a pushdown transition system is called a
pushdown language.

A pushdown process (according to the FS/FSES/ES interpretation) is a divergence-
preserving branching bisimilarity class of labelled transition systems containing a
pushdown transition system (according to the same interpretation). △

Note that the pushdown languages coincide, up to language equivalence, with the
context-free languages.

It is technically convenient to assume that the transitions of a pushdown
automaton are composed of two types that perform only a single operation on the
stack: either a push or a pop.

DEFINITION 4.7. Let s, t ∈ S of some pushdown automaton M. A push transition is
a transition of the form s a[⊥/d]−−−−→ t or s a[d/ed]−−−−−→ t (d, e ∈ D); a pop transition is a
transition of the form s a[⊥/ǫ]−−−−→ t (the empty-test) or s a[d/ǫ]−−−−→ t (d ∈D). △

THEOREM 4.8. For every PDA M there exists a PDA M′ that uses only push and pop
transitions such that T(M)↔∆

b
T(M′). �

PROOF. It is easy to see that only allowing push and pop transitions in the definition
of pushdown automaton yields the same notion of pushdown transition system up to
divergence-preserving branching bisimilarity:

1. Eliminate a transition of the form s a[⊥/δ]−−−−→ t, with δ = dn · · · d1 (n ≥ 2), by
adding fresh states s2, . . . , sn and replacing the transition s a[⊥/δ]−−−−→ t by transitions

s a[⊥/d1]−−−−−→ s2
τ[d1/d2d1]−−−−−−→ · · · τ[dn−2/dn−1 dn−2]−−−−−−−−−−→ sn

τ[dn−1/dndn−1]−−−−−−−−−→ t .

2. Eliminate a transition of the form s a[d/δ]−−−−→ t, with δ = dn · · · d1 (n ≥ 1), by
adding fresh states s1, . . . , sn and replacing the transition s a[d/δ]−−−−→ t by transitions
s a[d/ǫ]−−−−→ s1, s1

τ[⊥/d1]−−−−−→ s2 and s1
τ[e/d1e]−−−−−→ s2 for all e ∈D, and transitions

s2
τ[d1/d2d1]−−−−−−→ · · · τ[dn−2/dn−1dn−2]−−−−−−−−−−→ sn

τ[dn−1/dndn−1]−−−−−−−−−→ t .

Observe that we only get a finite number of additional inert τ-transitions in the
associated transition system. �

Curiously, the stack that is used by the pushdown automaton can be shown to be
defined by a pushdown automaton itself. Given a finite set of data D, the stack has
an input channel i over which it can receive elements of D and an output channel o

over which it can send elements of D. If the stack is empty, the stack can send the
data element ⊥ over channel o for the purpose of an empty-test.

The stack is defined by a pushdown automaton with one state ↑ (which is both
initial and final) and transitions ↑ o!⊥[⊥/ǫ]−−−−−→ ↑, ↑ i?d[⊥/d]−−−−−→ ↑, ↑ i?d[e/de]−−−−−−→ ↑, and
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o!⊥

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

FIGURE 4.3: Stack over D = {0, 1 }.

↑ o!d[d/ǫ]−−−−−→ ↑ for all d, e ∈D. The associated transition system according to the (FS)ES
interpretation of the stack over D= {0,1 } is presented in Figure 4.3.

If we want to model the stack that always terminates, i.e. that terminates
regardless of its contents, we can use the PDA specified above but then consider
the associated transition system according to the FS interpretation. This transition
system is isomorphic with the transition system in Figure 4.3 but each state is final.

4.1.1 Termination Conditions

In the introduction we have already mentioned that from a language-theoretic point
of view the different approaches to termination of pushdown automata (FS, ES, FSES)
are all equivalent, but not from a process-theoretic point of view.

ES and FSES

First, we argue that the pushdown transition systems according to the ES interpreta-
tion form a proper subclass, up to divergence-preserving branching bisimulation, of
the pushdown transition systems according to the FSES interpretation.

THEOREM 4.9. For each pushdown transition system according to the ES interpretation
there is, up to divergence-preserving branching bisimilarity, a pushdown transition
system according to the FSES interpretation. �

PROOF. Let T be the transition system associated with a pushdown automaton M

according to the ES interpretation. Let M′ be the pushdown automaton obtained
from M by declaring all states to be final. Then T is also the transition system
associated with M′ according to the FSES interpretation. �

When a PDA has an initial state that is also final, we call it initially terminating.
From a language-theoretic point of view this means that the PDA accepts the empty
word (ǫ); it is said to have the empty word property. All pushdown transition
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systems according to the ES interpretation can terminate in the initial state, since the
pushdown automaton has an empty stack in the initial state by definition. Therefore,
they are all initially terminating. This is not the case for pushdown transition
systems according to the FSES interpretation, hence, this constitutes a bigger class
of transition systems.

EXAMPLE 4.10. Consider the pushdown automaton M in Figure 4.4, which is a
modified version of the PDA in Figure 4.1 without an initial state that is also
final. The initial state of the associated transition system T(M) according the FSES
interpretation (see Figure 4.5) is not final.

s t

a[⊥/1]
a[1/11]

b[1/ǫ]

b[1/ǫ]

FIGURE 4.4: A pushdown automaton that is not initially terminating.

(s,ǫ) (s, 1) (s, 11) (s, 111)

(t,ǫ) (t, 1) (t, 11)

a a a a

b b b

bbb

FIGURE 4.5: The transition system associated with the PDA that is not initially
terminating according to the FSES interpretation.

The initial state of every pushdown transition system associated with a PDA
according to the ES interpretation is always also a final state, because the stack of
a PDA is empty in the initial state by definition. Therefore, there can be no pushdown
transition system according to the ES interpretation that is branching bisimilar with
the pushdown transition system in Figure 4.5. ♦

For pushdown automata that are initially terminating, the class of pushdown
transition systems according to the FSES interpretation is the same, up to divergence-
preserving branching bisimilarity, as the class according to the ES interpretation.
Examples of such pushdown automata are the example PDA in Figure 4.1 and the
stack PDA defined before.

We can modify the initially-terminating pushdown automata in such a way that
the associated transition system according to the FSES interpretation is branching
bisimilar with the transition system associated with the modified PDA according to
the ES interpretation. Intuitively, if we go from FSES to ES, the termination condition
gets more liberal as we drop the final state requirement. Therefore, we have to ensure
that termination on empty stack is still only possible in states that are branching
bisimilar to the states originally marked as final. A way to do this is by controlling
where the stack becomes empty.
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EXAMPLE 4.11. Let us consider the example PDA in Figure 4.6 below and the
modified PDA in Figure 4.7.

s t u

a[⊥/1]
a[1/11]

c[1/ǫ]

b[1/ǫ]

c[1/ǫ]

b[1/ǫ]

FIGURE 4.6: An example of an initially-terminating pushdown automaton.

By adding the fresh state ↑ and transition ↑ τ[⊥/∅]−−−−−→ s we put an extra, fresh data
element ∅ on the stack, before the original initial state s, so that the stack can only
become empty when we want it to. We replace all transitions performing an empty
test by transitions that perform a test on whether the top data element is ∅, e.g.
s a[∅/1∅]−−−−−→ s. Finally, we add for final states s and u in the original PDA the fresh
states s⊥,u⊥ and four transitions: s τ[∅/ǫ]−−−−→ s⊥ and u τ[∅/ǫ]−−−−→ u⊥ to remove this marker
when in the FSES case termination could occur, and s⊥

τ[⊥/∅]−−−−−→ s and u⊥
τ[⊥/∅]−−−−−→ u to

put the end-of-stack marker back.

↑ s t u

s⊥ u⊥

a[∅/1∅]
a[1/11]

τ[⊥/∅] c[1/ǫ]

b[1/ǫ]

c[1/ǫ]

b[1/ǫ]

τ[∅/ǫ]

τ[⊥/∅]
τ[∅/ǫ]

τ[⊥/∅]

FIGURE 4.7: Modified pushdown automaton for FSES to ES.

The associated transition systems with the original PDA and the modified PDA
above are branching bisimilar. However, this modification introduces divergence, as
it is possible to infinitely often push and pop the end-of-stack marker. A slightly more
complicated modification that preserves divergence is shown in Figure 4.8.

s

s⊥

t

t⊥

u

u⊥

a[⊥/1⊥]

a[1⊥/11⊥]
a[1/11]

c[1/ǫ]

c[1⊥/∅]

b[1/ǫ]

b[1⊥/∅]

c[1/ǫ]

c[1⊥/ǫ]

b[1/ǫ]

b[1⊥/ǫ]

FIGURE 4.8: Modified pushdown automaton for FSES to ES preserving

divergence.
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For each original state we add a fresh state that encodes that the stack is empty
(states s⊥, t⊥ and u⊥). For each data element d we add a fresh data element d⊥;
we use these fresh data elements to keep track of when the stack is about to become
empty by ensuring that the last data element on the stack is marked. Now, we replace
a push transition that performs an empty test by a transition that puts a marked data
element on the stack. For example, we replace s a[⊥/1]−−−−→ s by s⊥

a[⊥/1⊥]−−−−−→ s. For the
other push transitions we add transitions that ensure the last data element on the
stack stays marked. For example, for the transition s a[1/11]−−−−−→ s we add s a[1⊥/11⊥]−−−−−−→ s.
For each pop transition we add a transition that moves to “empty stack” counterpart
of the destination state if a marked data element is popped. In the example these
are the four transitions: s c[1⊥/∅]−−−−−→ t⊥, t b[1⊥/∅]−−−−−→ t⊥, t c[1⊥/ǫ]−−−−→ u⊥, and u b[1⊥/ǫ]−−−−−→ u⊥.
Note that the transitions that move to t⊥ put the dummy data element ∅ on the stack,
rather than letting it become empty. This is necessary because t is not a final state in
the original PDA; only pop transitions to “stack empty” counterpart states for states
that are final in the original PDA will let the stack really become empty. ♦

Not shown in the example above is that all newly introduced push transitions from
a state s⊥ such that s 6∈ ↓ should remove the dummy data element ∅.

We now show that this modification works universally up to divergence-preserving
branching bisimilarity for all PDAs that are initially terminating.

THEOREM 4.12. For each pushdown transition system according to the FSES interpre-
tation associated with a PDA that is initially terminating there is, up to divergence-
preserving branching bisimilarity, a pushdown transition system according to the ES
interpretation. �

PROOF. Let M = (S,A,D,→,↑,↓) be some pushdown automaton that is initially
terminating. By Theorem 4.8, we can assume that M only has push and pop
transitions. We shall modify M such that the transition system associated with the
modified pushdown automaton according to the ES interpretation is divergence-
preserving branching bisimilar with the transition system associated with M according
to the FSES interpretation. We define the modified pushdown automaton M′ =
(S′,A,D′,→′,↑,;) as follows:

1. S
′ is obtained from S by adding a “stack empty” state s⊥ for every state s ∈ S;

2. D
′ is obtained from D by adding a marked data element d⊥ for each d ∈D and

a fresh dummy data element ∅;

3. →′ is obtained from→ by

a) replacing all push transitions (s,a,⊥, d, t) ∈ → by either (s⊥,a,⊥, d⊥, t) ∈
→′ if s ∈ ↓, or (s⊥,a,∅, d⊥, t) ∈→′ if s 6∈ ↓,

b) adding for each push transition (s,a, d, ed, t) ∈ → a push transition
(s,a, d⊥, ed⊥, t) ∈→′,
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c) replacing all pop transitions (s,a,⊥,ǫ, t) ∈→ by



(s,a,∅,∅, t) ∈→′ if s 6∈ ↓, t 6∈ ↓,
(s,a,∅,ǫ, t) ∈→′ if s 6∈ ↓, t ∈ ↓,
(s,a,⊥,∅, t) ∈→′ if s ∈ ↓, t 6∈ ↓,

leaving the remaining pop transitions if s ∈ ↓, t ∈ ↓ untouched,

d) adding for each pop transition (s,a, d,ǫ, t) ∈ → a pop transition either
(s,a, d⊥,ǫ, t) ∈→′ if t ∈ ↓ or (s,a, d⊥,∅, t) ∈→′ if t 6∈ ↓.

We leave it to the reader to verify that the relation

R = { ((s,ǫ), (s⊥,ǫ)) | s ∈ ↓ } ∪ { ((s,ǫ), (s⊥,∅)) | s ∈ S \ ↓ } ∪
{ ((s,δd), (s,δd⊥)) | s ∈ S, d ∈ D,δ ∈ D∗ }

is a divergence-preserving branching bisimulation between the transition associated
system with M according to the FSES interpretation and the transition system
associated with M′ according to the ES interpretation. �

If we combine the result above with the result of Theorem 4.9 we obtain as
a corollary that for pushdown automata that are initially terminating, the class of
pushdown transitions systems according to the FSES interpretation is the same, up
to divergence-preserving branching bisimilarity, as the class according to the ES
interpretation.

FSES and FS

We proceed to argue that the class of pushdown transition systems according to
the FSES interpretation is a proper subclass, up to divergence-preserving branching
bisimilarity, of the class of pushdown transition systems according to the FS
interpretation. The classical proof (see, e.g., [HMU06, Theorems 6.9 and 6.11])
that a pushdown language according to the “acceptance by final state” approach is
also a pushdown language according to the “acceptance by empty stack” approach
employs τ-transitions in a way that is valid up to language equivalence, but not up
to branching bisimilarity. For instance, the construction that modifies a pushdown
automaton M into another pushdown automaton M′ such that the language accepted
by M by final state is accepted by M′ by empty stack adds τ-transitions from every
final state of M to a fresh state in M′ in which the stack is emptied. The τ-transitions
introduce, in M′, a choice between the original outgoing transitions of the final state
in M and termination by going to the fresh state; this choice is not necessarily present
in M, and therefore the transition systems associated with M and M′ may not be
branching bisimilar.

If we want to go from FSES to FS, we drop the empty stack requirement. To
still get the same behaviour, intuitively, we would have to add new final states that
can only be entered from the original final states by using the empty test. This
construction modifies the PDA in a similar way to the construction presented in
Example 4.11.
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EXAMPLE 4.13. Let us consider the example PDA in Figure 4.6 and the modified PDA
in Figure 4.9. We add for each final state in the original PDA the fresh states s⊥,u⊥
and four empty-test transitions s τ[⊥/ǫ]−−−−→ s⊥ and u τ[⊥/ǫ]−−−−→ u⊥ to detect when in the
FSES case termination could occur, and s⊥

τ[⊥/ǫ]−−−−→ s and u⊥
τ[⊥/ǫ]−−−−→ u to be able to

return.

s

s⊥

t t

s⊥

a[⊥/1]
a[1/11]

c[1/ǫ]

b[1/ǫ]

c[1/ǫ]

b[1/ǫ]

τ[⊥/ǫ]

τ[⊥/ǫ]

τ[⊥/ǫ]

τ[⊥/ǫ]

FIGURE 4.9: Modified pushdown automaton for FSES to FS.

This idea leads to a transformation that is correct up to branching bisimilarity, but
does not preserve divergence, as it is possible to infinitely often perform empty-test
transitions. We present a different approach that preserves divergence in Figure 4.10.
This modification is inspired on the modification in Example 4.11 in the sense that it
keeps track of when the stack is empty using extra states and marked data elements.

s t t

s⊥ t⊥ s⊥

a[1⊥/11⊥]
a[1/11]

c[1/ǫ]

c[1⊥/ǫ]

b[1/ǫ]

b[1⊥/ǫ]

c[1/ǫ]

c[1⊥/ǫ]

b[1/ǫ]

a[⊥/1⊥] b[1⊥/ǫ]

FIGURE 4.10: Modified pushdown automaton for FSES to FS preserving
divergence.

The modification is almost the same as from FSES to ES, except that we do not
use the dummy data element ∅ (cf. Figure 4.8). Instead, we only mark the “stack
empty” counterpart states final if they correspond to final states in the original PDA.
In this example these are s⊥ and u⊥. ♦

We now show that this modification works universally for all PDAs up to
divergence-preserving branching bisimilarity.

THEOREM 4.14. For each pushdown transition system according to the FSES interpreta-
tion there is, up to divergence-preserving branching bisimilarity, a pushdown transition
system according to the FS interpretation. �

– 47 –



4.1. PUSHDOWN AUTOMATA

PROOF. Let M = (S,A,D,→,↑,↓) be some pushdown automaton. By Theorem 4.8
we can assume that M only has push and pop transitions. We shall modify M

such that the transition system associated with the modified pushdown automaton
according to the FS interpretation is divergence-preserving branching bisimilar to the
transition system associated with M according to the FSES interpretation. We define
the modified pushdown automaton M′ = (S′,A,D′,→′,↑,↓′) as follows:

1. S
′ is obtained from S by adding a fresh state s⊥ for every state s ∈ S;

2. D
′ is obtained from D by adding a marked data element d⊥ for each d ∈D;

3. →′ is obtained from→ by

a) replacing all push transitions (s,a,⊥, d, t) ∈→ by (s⊥,a,⊥, d⊥, t) ∈→′,
b) adding for each push transition (s,a, d, ed, t) ∈ → a push transition
(s,a, d⊥, ed⊥, t) ∈→′,

c) adding for each pop transition (s,a, d,ǫ, t) ∈ → a pop transition
(s,a, d⊥,ǫ, t⊥) ∈→′;

4. ↓′ is the set { s⊥ | s ∈ ↓ } of all the newly added states that are counterparts of
final states in M.

We leave it to the reader to verify that the relation

R = { ((s,ǫ), (s⊥,ǫ)) | s ∈ S } ∪ { ((s,δd), (s,δd⊥)) | s ∈ S, d ∈D,δ ∈D∗ }

is a divergence-preserving branching bisimulation between the transition system
associated with M according to the FSES interpretation and the transition system
associated with M′ according to the FS interpretation. �

Consequently, the class of pushdown transition systems according to the FSES
interpretation is at least, up to divergence-preserving branching bisimilarity, a
subclass of the class according to the FS interpretation. We can show that it is even a
proper subclass.

EXAMPLE 4.15. Consider the pushdown automaton shown in Figure 4.11.

b[1/ǫ]

a[⊥/1]
a[1/11]

FIGURE 4.11: The counter pushdown automaton.

The transition system associated with it according to the FS interpretation is
depicted in Figure 4.12; it has infinitely many terminating configurations. Moreover,
no pair of these configurations is branching bisimilar, which we can see by noting that
the nth state from the left can perform at most n−1 times a b-transition before it has
to perform an a-transition again.
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a a a

bbb

a

b

FIGURE 4.12: The transition system associated with PDA of Figure 4.11
according to the FS interpretation.

In contrast with this, note that the transition system associated with the pushdown
automaton according to the FSES interpretation, as shown in Figure 4.13, necessarily
has finitely many terminating configurations, for the pushdown automaton has only
finitely many states and the stack is required to be empty.

a a a

bbb

a

b

FIGURE 4.13: The transition system associated with automaton of Figure 4.11
according to the FSES interpretation.

This is a property of all pushdown transition systems according to the FSES
interpretation. Therefore, there can be no pushdown transition system according to
the FSES interpretation that is branching bisimilar to the pushdown transition system
in Figure 4.12. ♦

The following mutual relations between the different classes of pushdown
transition systems up to divergence-preserving branching bisimilarity have been
established. (See also Figure 4.14 for a schematic overview. Note that in the diagram
FSESit stands for the class of transition systems according to the FSES interpretation
associated with initially-terminating PDAs.)

FS

FSES

ES

(= FSESit)

/↔b, /↔∆
b

FSES ⊆ FS Theorem 4.14
FS 6⊆ FSES Example 4.15

ES ⊆ FSES Theorem 4.9
FSES 6⊆ ES Example 4.10

FSESit ⊆ ES Theorem 4.12

FIGURE 4.14: Overview of the different classes of pushdown transition
systems.

COROLLARY 4.16. The class of pushdown transition systems according to the ES
interpretation is a proper subclass, up to divergence-preserving branching bisimilarity,
of the class of pushdown transition systems according to the FSES interpretation.

– 49 –



4.2. SEQUENTIAL SPECIFICATIONS

The class of pushdown transition systems according to the FSES interpretation is
a proper subclass, up to divergence-preserving branching bisimilarity, of the class of
pushdown transition systems according to the FS interpretation. �

Because the difference between the pushdown transition systems according to the
ES and FSES interpretations is only based on whether the associated PDA is initially
terminating or not, we will only consider the latter class from here on.

4.2 Sequential Specifications

In the previous chapter we have investigated the link between linear specifications
and finite automata. In this section we will introduce the sequential specifications
as the process-theoretic counter part of context-free grammars. We then consider a
process-theoretic version of the standard result in the theory of automata and formal
languages [Sud88, Sip97, HMU06] stating that the class of languages accepted by
pushdown automata coincides with the class of languages generated by context-
free grammars. This is done by comparing the pushdown transitions systems with
the transition systems associated with sequential specifications up to (divergence-
preserving) branching bisimilarity. We will first show that it is impossible to obtain
this correspondence with the class of pushdown transition systems according to
the FS interpretation. Then, we will consider the correspondence for pushdown
transition systems according to the FSES interpretation and see that we still have to
apply restrictions to both the pushdown automata and sequential specifications if we
want to obtain the correspondence. Finally, we look into the decidability of whether
two sequential specifications are equal. It is well-known from automata and formal
language theory that it is undecidable whether two context-free grammars generate
the same language. We will extend earlier work [BBK93, Bos97, Srb01] by showing
that it is decidable whether two restricted sequential specifications are bisimilar.

Context-free Grammars

As the process-theoretic counterparts of context-free grammars we shall consider
recursive specifications in the subtheory TSPτ (Theory of Sequential Processes) of
TCPτ, which is obtained from BSPτ by adding sequential composition _ ·_. Note that
TSPτ can also be seen as the process theory BPA extended with prefixing, 0 and 1
which also allows for τ-transitions. Processes definable in BPA are often referred
to as “context-free processes.” The motivation in the literature for this terminology
seems to be twofold. On the one hand, it is easy to see that the language associated
with a process definable in normed BPA is context-free. On the other hand, context-
free grammars in Greibach normal form can be regarded as a BPA-specification by

1. regarding non-terminals as recursion names,

2. regarding a right-hand side aξ of a production N −−→ aξ as the sequential
composition of the action a and the sequence of non-terminals ξ, and
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3. combining the right-hand sides of all productions N −−→ a1ξ1 | · · · | anξn for a
non-terminal N with non-deterministic choice to constitute a single right-hand
side a1ξ1 + · · ·+ anξn defining the recursion name N.

The resulting recursive specification is guarded and generates a labelled transition
system with the same language as the original context-free grammar.

It is well-known from the theory of automata and formal languages (see, e.g.,
[Sud88, Theorem 5.6.3]) that a context-free grammar can be transformed into
Greibach normal form, provided that the grammar does not include so-called
useless non-terminals (i.e., non-terminals for which there is no production) and λ-
productions (or ε-productions). The first restriction is harmless from a language-
theoretic point, for there is a language-preserving transformation that eliminates
useless non-terminals from a context-free grammar. It is, however, unfortunate from
a process-theoretic point of view, for, intuitively, a non-terminal without productions
corresponds with a deadlocked process. The second restriction is inconvenient even
from a language-theoretic point of view, for it excludes all languages with the empty
word property.

A thorough investigation of the process theory TSPτ reinforces the connection
between the theory of automata and formal languages on the one hand, and process
theory on the other hand. Firstly, it allows a translation of all context-free grammars
directly into a finite recursive TSPτ-specification: if there is a λ-production (or ε-
production) for N, then the right-hand side of the defining equation for N gets
a summand 1, and if the non-terminal N is useless, then it is defined by the

recursion equation N
def
= 0. Secondly, is possible to define, up to (divergence-

preserving) branching bisimilarity, every non-deterministic finite automaton with a
finite (guarded) recursive TSPτ-specification, while it is not possible to define non-
deterministic finite automata with intermediate accepting states with a BPA- or
BPA0-specification.

DEFINITION 4.17. A sequential specification over some finite set of names N is a finite,
τ-guarded recursive TSPτ-specification, i.e. a recursive specification over N in which
only the constructions 0, 1, N (N ∈ N), a._ (a ∈ Aτ), _ · _ and _+ _ are used to build
sequential process expressions △

EXAMPLE 4.18. The process expression N defined by the sequential specification

N
def
= 1+ a.N · b.1

specifies the pushdown transition system according to the FSES interpretation in
Figure 4.13, that is associated with the pushdown automaton in Figure 4.11. ♦

Similarly to context-free grammars, our sequential specifications can be brought
into Greibach normal form as well. We can define a normal form for sequential
specifications if we instantiate Definition 2.19 (on page 19) with the sequence of
names interpreted as a sequential composition of names.
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DEFINITION 4.19. A sequential specification E is in sequential normal form if each
defining equation of a name N ∈N is of the following form:

N
def

=
∑

i∈IN

ai.ξi (+ 1) .

In this form, every right-hand side of every defining equation consists of a number
of summands, indexed by a finite set IN (the empty sum is 0), each of which is 1, or
of the form ai.ξi with ai ∈ Aτ and ξi a sequential composition of names; the empty
sequential composition is denoted by 1. △

It is well-known that all sequential specifications can be brought in sequential
normal form.

PROPOSITION 4.20. For each sequential specification E and sequential process expres-
sion p there exists a sequential specification in sequential normal form E′ such that
TE′(p)↔∆

b
TE(p). �

If the sequences have a length of at most two, we say that the sequential
specification is in restricted normal form. A proof of the following proposition follows
the same lines of the proof of [BBK93, Proposition 4.3].

PROPOSITION 4.21. For each sequential specification E and sequential process expres-
sion p there exists a restricted sequential specification in sequential normal form E′ such
that TE′ (p)↔∆

b
TE(p). �

We can associate transition systems with sequential specifications according to the
operational rules in Table 2.1 (on page 15). This also gives us the notion of sequential
process.

DEFINITION 4.22. A sequential process is a divergence-preserving branching bisimi-
larity class of labelled transition systems containing a transition system associated
with a sequential specification and sequential process expression. △

4.2.1 Correspondence

Now that we have defined sequential specifications as our process-theoretic coun-
terparts of context-free grammars, we can investigate their relation with pushdown
automata. That the notion of sequential specification still naturally corresponds with
the notion of context-free grammar is confirmed by the following theorem that states
the correspondence up to language equivalence. For the proof we refer to [HMU06,
Section 6.3].

THEOREM 4.23. For every pushdown automaton M there exists a sequential specifica-
tion E, with initial name I, such that T(M) ≈ TE(I) according to the FS, ES or FSES
interpretation, and, vice versa, for every sequential specification E, with initial name I,
there exists a pushdown automaton M such that TE(I) ≈ T(M) according to the FS, ES
or FSES interpretation. �
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We will now investigate the same result up to divergence-preserving branching
bisimilarity. That is, we will compare pushdown transitions systems, according
to the FS and FSES interpretations, with transition systems associated with the
sequential specifications, given by the SOS rules in Table 2.1 (on page 15). After
some definitions we will investigate the correspondence in both directions, first for
the FS interpretation and then the FSES interpretation.

Let E be a sequential specification and I be its initial name. We say that E is
simulated by some PDA M (according to the FS/FSES interpretation), if we have that
T(M)↔∆

b
TE(I). Vice versa, a PDA M (according to the FS/FSES interpretation) is said

to be defined by a sequential specification E, with initial name I, if TE(I)↔∆
b

T(M).
If we know that there is such a sequential specification for PDA M we say that M is
definable by a sequential specification.

Let us first consider a prominent PDA or pushdown transition system that can
be defined by a sequential specification. Recall the pushdown transition system
according to the (FS)ES interpretation of a stack shown in Figure 4.3.

The following infinite recursive specification E∞S specifies the behaviour of the

process Sξ , modelling a stack with as contents the sequence of data elements ξ
that receives input over channel i, i.e. when data is pushed, and sends output over
channel o, i.e. when data is popped. For the empty stack, we have:

Sǫ
def
= 1+ o!⊥.Sǫ +

∑

d∈D
i?d.Sd ,

and for every non-empty string dξ (d ∈D, ξ ∈D∗):

Sdξ
def
= o!d.Sξ +
∑

e∈D
i?e.Sedξ .

However, we would like our stack to be defined by a finite version of this specification
to obtain a sequential specification.

DEFINITION 4.24. The following sequential specification defines a stack:

S
def
= 1+ o!⊥.S +
∑

d∈D
i?d.S6⊥ · o!d.S ,

S6⊥
def
= 1+
∑

d∈D
i?d.S6⊥ · o!d.S6⊥ ;

we refer to this specification of a stack over D as ES . Note that the associated
transition system is, up to isomorphism, the same as the pushdown transition system
shown in Figure 4.3. △

Note that only the stack PDA according to the FSES interpretation is defined by
the sequential specification above. If we take the FS interpretation, we get the stack
that can always terminate. We shall see later that in this case the stack PDA is not
definable by a sequential specification.
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A state of the stack can be characterised by a sequential composition, for example:
S6⊥ ·o!dn.S6⊥ · . . . ·o!d1.S. An obvious modification to make ES always terminating would
be to ensure that every component of the sequential composition has a 1-summand
so that termination is always possible.

DEFINITION 4.25. The sequential specification ES f of the forgetful stack over D is
defined as follows:

S f def
= 1+ o!⊥.S f +

∑

d∈D
i?d.S

f

6⊥ · (o!d.1+ 1) · S f ,

S
f

6⊥
def
= 1+
∑

d∈D
i?d.S

f

6⊥ · (o!d.1+ 1) · S f

6⊥ ;

see Figure 4.15 for the, rather contrived, associated transition system. Every node
depicted has infinitely many incoming arrows. The dotted arrows only denote some
of the outgoing arrows from nodes of level 4. △
Although every state is a final state, we have introduced unwanted behaviour by
adding the 1-summands. We can “forget” items that are on the stack by popping
items that are not the top element. Also the empty-test has lost its meaning as it is
always enabled.

o!⊥

o!⊥
i?0

o!0

o!⊥

i?1

o!1

i?0

o!⊥

o!0

o!0

i?1

o!⊥
o!1

o!0

i?0

o!⊥

o!0

o!1
i?1

o!⊥
o!1

o!1

FIGURE 4.15: Forgetful stack over D= {0, 1 }.

Pushdown transition systems according to the FS interpretation

We will now show that, in general, pushdown transition systems according to the
FS interpretation cannot be defined by sequential specifications up to (divergence-
preserving) branching bisimilarity.

THEOREM 4.26. There exists a pushdown transition system according to the FS interpre-
tation such that there is no sequential specification with an associated transition system
that is (divergence-preserving) branching bisimilar to it. �
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PROOF. We prove by contradiction that the counter pushdown automaton (see
Figure 4.11) according to the FS interpretation (see Figure 4.12) is not definable
by a sequential specification. Let us first assume that there exists such a sequential
specification E. Then, by Proposition 4.20, we can assume that E is in sequential
normal form. From the definition of GNF (see Definition 2.19 on page 19) it
follows that every state of the transition system associated with E is denoted by a
sequential composition of its names. Since the associated transition system should be
(divergence-preserving) branching bisimilar with the transition system in Figure 4.12,
we now know two things about the names in E:

1. without loss of generality we can assume that all reachable names have a 1-
summand in their defining equation, and

2. each name has a bounded b-norm, i.e. a maximal number of b-transitions that
can be performed from the state associated with the name without performing
any a-transitions.

Let n be the maximal b-norm of all names in E. Now, let s be a state that
has a b-norm that is larger than n and let ξ be the sequential composition of
names that belongs to the (divergence-preserving) branching bisimilar state in the
associated transition system of E. Because the b-norm is larger than n, the sequence ξ
must contain at least two names that can perform a b-transition, for example
X,Y in ξ0Xξ1Yξ2. However, because all names have a 1-summand, we have that
ξ0Xξ1Yξ2

b−−→ ξ1Yξ2 and ξ0Xξ1Yξ2
b−−→ ξ2, thus leading to two non-bisimilar states.

This is not possible in the transition system of the counter PDA. Hence, a sequential
specification does not exist. �

For the remainder of this section, we shall focus on the FSES interpretation. In
Section 4.3 we will come back to the FS interpretation.

Pushdown transition systems according to the FSES interpretation

We shall see below that the classical correspondence result with language equivalence
replaced by branching bisimilarity still does not hold if we restrict ourselves to
the FSES interpretation. In fact, we shall see that there are pushdown transition
systems that are not (divergence-preserving) branching bisimilar with the transition
system associated with a sequential specification, and that there are also sequential
specifications that are not (divergence-preserving) branching bisimilar to a pushdown
transition system. We shall first present a restriction on sequential specifications and
relate them with a subclass of the pushdown automata and then given this restricted
class of pushdown automata achieve the desired equivalence: we shall prove that
the transparency-restricted sequential specifications correspond with the so-called pop
choice-free pushdown automata.

On the side of sequential specifications, restricting to the sequential normal form is
not sufficient to get the desired correspondence between transition systems associated
with sequential specifications and pushdown transition systems.
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EXAMPLE 4.27. Consider the following sequential specification, which is in sequen-
tial normal form:

X
def
= a.X · Y + b.1 ,

Y
def
= 1+ c.1 .

The transition system associated with X, which is depicted in Figure 4.16, has
unbounded branching. ♦

X X · Y X · Y2 X · Y3

1 Y Y2 Y3

a a a

b b b b

ccc

c c

c

a

c

FIGURE 4.16: A transition system with unbounded branching.

Note that if i 6= j, then Y i and Y j are not bisimilar, since each state Y i admits up
to i consecutive c-transitions. Hence, there does not exist a bound on the branching
degree of process expressions reachable from X: each Y i (i ∈ N) is reachable and has
a branching degree of i. Note how, intuitively, execution of the c-transition from Y i

to Y j “skips” the behaviour of all intermediate Yk ( j < k < i).
A name N in a recursive specification is called transparent if its defining

equation has a 1-summand; otherwise it is called opaque. Recall that we had a
similar unbounded branching problem with the specification of the forgetful stack
(see Definition 4.25) where also all elements of the sequential specification are
transparent.

In [BCLT10], we have conjectured that a pushdown transition system cannot have
unbounded branching. If we desire a correspondence between sequential specifica-
tions and pushdown automata, we shall have to exclude sequential specifications
with associated transition systems that have unbounded branching. One way to
achieve this is to require that transparent names may only occur as the last element
of reachable sequential compositions of names.

DEFINITION 4.28. Let E be a sequential specification in sequential normal form.
We call such a specification transparency-restricted if for all (generalised) sequential
compositions of names ξ reachable from a name in E it holds that all but the last
name in ξ is opaque. △

While transparency-restrictedness might seem quite a severe restriction on se-
quential specifications, note that it still allows us to specify useful processes such as
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the stack over D defined in Definition 4.24. While not yet transparency-restricted,
it can be defined with a transparency-restricted recursive specification by bringing it
in sequential normal form: it suffices to add, for all d ∈ D, a name Td to replace
S6⊥ · o!d.1.

DEFINITION 4.29. Thus we redefine the the stack over D by the following trans-
parency-restricted sequential specification:

S
def
= 1+ o!⊥.S +
∑

d∈D
i?d.Td · S ,

Td

def
= o!d.1+
∑

e∈D
i?e.Te · Td . △

It can easily be seen that the transition system associated with a name in a
transparency-restricted specification has bounded branching: the branching degree
of a state denoted by a reachable sequential composition of names is equal to the
branching degree of its first name, and the branching degree of a name is bounded
by the number of summands of the right-hand side of its defining equation.

We are now in a position to establish a process-theoretic counterpart of the
correspondence between pushdown automata and context-free grammars. First, we
consider the direction from transparency-restricted sequential specification to push-
down automaton. For each specification we can construct a pushdown automaton
that simulates it.

EXAMPLE 4.30. Let E be the following sequential specification:

X
def
= a.X · Y + b.Y + c.1 ,

Y
def
= d.1 .

This specification is in restricted sequential normal form and transparency-restricted
as both X and Y are opaque. Figure 4.17 depicts a pushdown automaton with only
push and pop transitions that simulates E if we take X as its initial name.

X Y

Int 1

a[⊥/Y]
a[Y/YY]

b[⊥/Y]
b[Y/YY]

c[⊥/ǫ]

c[Y/ǫ]
d[Y/ǫ]

d[⊥/ǫ]

τ[Y/ǫ]

FIGURE 4.17: A pushdown automaton simulating sequential specification E.

We have a state for each name in the specification and two extra states: 1 to go to
when the stack is empty, and Int as an intermediate state to ensure that we only have
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push- and pop transitions. (The reason for this will become apparent later.) For each
summand of a name in the specification we have a corresponding PDA transition from
the state corresponding to the name. Therefore, if we are in a state corresponding
with a name, we are simulating the behaviour of that name. For example, for X we
have the summands a.X · Y, b.Y, and c.1. For the summand a.X · Y we add transitions
X a[⊥/Y]−−−−→ X and X a[Y/YY]−−−−−→ X, because if we perform an a-transition from X, we end up
in X again with an extra Y on the stack. For the summand b.Y we add the transitions
X b[⊥/Y]−−−−→ Int, X b[Y/YY]−−−−−→ Int, and Int τ[Y/ǫ]−−−−→ Y. Since the b-transition requires no stack
manipulation, we actually just need to go to Y, and this would result in neither a push-
or pop transition, we go through an intermediate state. Finally, for the summand c.1
we add the transitions X c[⊥/ǫ]−−−−→ 1 and X c[Y/ǫ]−−−−→ Y. If the c-transition is executed, we
are done with simulating X. We pop from the stack to see what is next and move to
the corresponding state. If the stack is empty, we are done and we move to state 1,
where we can terminate. ♦

In the example we used the knowledge that only the name Y will ever be stacked.
For clarity, all transitions that dealt with the possibility that the name X could be
popped from the stack have been omitted. We can generalise the example above to a
more formal construction and obtain the following result.

THEOREM 4.31. For every transparency-restricted sequential specification E, with initial
name I, there exists a pushdown automaton M such that T(M)↔∆

b
TE(I). �

PROOF. Let E be a transparency-restricted sequential specification over a finite set
of names N, and let I be an initial name of E. We define a pushdown automaton
M = (S,A,D,→,↑,↓) as follows:

1. S consists of all names in N, the symbol 1, and an extra intermediate state Int;

2. A consists of all the actions occurring in E;

3. D consists of the names occurring in E;

4. → is defined as follows: for all a ∈ A
a) if the right-hand side of the defining equation for a name N has a summand

a.1, then→ has transitions N a[⊥/ǫ]−−−−→ 1 and N a[N′/ǫ]−−−−→ N′ (N′ ∈N),

b) if the right-hand side of the defining equation for a name N has a summand
a.N′, then there are transitions N a[d/N′d]−−−−−→ Int (d ∈ D), N a[⊥/N′]−−−−−→ Int and
Int τ[N′/ǫ]−−−−→ N′,

c) if the right-hand side of the defining equation for a name N has a summand
a.N′ ·N′′, then there are transitions N a[d/N′′d]−−−−−−→ N′ (d ∈D);

5. ↑ is the initial name I;

6. ↓ consists of 1 and all names with a 1-summand.

Note that the transitions in M are either a pop or a push transition, and that the τ-
transitions introduced in the transition system associated with M are inert. We leave
it to the reader to verify that the relation

R = { (Nξ, (N,ξ)), (Nξ, (Int,Nξ)) | N ∈N,ξ ∈N∗ } ∪ { (1, (1,ǫ)) }
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is a divergence-preserving branching bisimulation between the transition system
associated with the sequential specification E for the initial name I and the transition
system associated with M according to the FSES interpretation. �

Note that in the construction in the example and proof above we have that,
when some name N is popped, the PDA always ends up in the state labelled N. A
more general version of this property turns out to be vital if we want to obtain a
correspondence in the other direction.

c[⊥/ǫ]
c[1/1]

a[⊥/1]
a[1/11]

b[1/ǫ] b[1/ǫ]

FIGURE 4.18: A pushdown automaton that is not pop choice-free.

Consider the pushdown automaton in Figure 4.18; the associated transition
system is shown in Figure 4.19. In [Mol96], Moller proved that this transition system
cannot be defined with a recursive BPA-specification. His proof can be modified to
show that the transition system is not definable with a sequential specification either.

c c c c

bbb b

a a a

bbb

a

b

FIGURE 4.19: The transition system associated with the PDA of Figure 4.18.

Note that a push of a data element 1 in the initial state of the pushdown
automaton in Figure 4.18 can be popped again in the initial state or in the final state:
the choice of where the pop will take place cannot be made at the time of the push. In
other words, in the pushdown automaton in Figure 4.18 pop transitions may induce
a choice in the associated transition system; we refer to such choice through a pop
transition as a pop choice. We shall prove below that by disallowing pop choices we
define a class of pushdown processes that are definable with sequential specifications.

DEFINITION 4.32. Let M be a pushdown automaton that uses only push and pop
transitions. A d-pop transition is a transition s a[d/ǫ]−−−−→ t, which pops a data element d.
We say M is pop choice-free iff whenever there are two d-pop transitions s a[d/ǫ]−−−−→ t

and s′ b[d/ǫ]−−−−→ t′, then t = t′. A pushdown transition system is pop choice-free if is
associated with a pop choice-free pushdown automaton. △

We have not been able to establish that our result is optimal, i.e. that pop choice-
freeness is a necessary condition to be able to define it by a sequential specification.
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CONJECTURE 4.33. For each pushdown automaton M there exists a transparency-
restricted sequential specification E, with initial name I, such that TE(I)↔∆

b
T(M) if,

and only if, M is pop choice-free. �

All pushdown automata that can be constructed to simulate a sequential specifica-
tion according to the proof of Theorem 4.35 are pop choice-free. Now, if we maintain
the pop choice-free restriction for the other direction, we get the full correspondence.

EXAMPLE 4.34. Let us consider the example pushdown automaton shown in Fig-
ure 4.1 (on page 39). This pushdown automaton is pop choice-free, for both 1-pop
transitions lead to the same state t.

Now, consider the following sequential specification that defines the PDA:

Nsǫ
def
= 1+ a.Ns1t ·Ntǫ ,

Ntǫ
def
= 1 ,

Ns1t

def

= b.1+ a.Ns1t ·Nt1t ,

Nt1t

def
= b.1 ;

the initial name of this specification is Nsǫ. The associated transition system has been
depicted in Figure 4.20.

Nsǫ Ns1tNtǫ Ns1tNt1tNtǫ Ns1t Nt1t Nt1t Ntǫ

Ntǫ Nt1tNtǫ Nt1t Nt1t Ntǫ

a a a a

b b b

bbb

FIGURE 4.20: The transition system associated with sequential specification

defining the PDA from Figure 4.1.

The names Nsǫ and Ntǫ are introduced to encode that we are in state s and t

respectively and that the stack is empty. Both names have a 1-summand because
both states are also final states.

Since we know that the PDA is pop choice-free, we can determine for each data
element d ∈ D the state we are going to end up in if we pop that data element.
In this case there is only the data element 1; after a 1-pop transition we end up in
state t. So, we also introduce the names Ns1t and Nt1t as both states s and t have a
1-pop transition to t. Intuitively, the names encode in which state we are, that a data
element 1 is stacked and what state we end up in once it is popped.

We have added summands to the defining equations for each name, given that
the PDA only has push and pop transitions. For name Nsǫ this is the empty-test
(push) transition s a[⊥/1]−−−−→ t for which we have added the summand a.Ns1t ·Ntǫ. This
summand ensures that after an a-transition we are still in state s, stack the data
element 1 and once this is popped we end up in t (and by then the stack is empty).
For name Ns1t we add a similar summand for the pop transition s a[1/11]−−−−−→ s. Finally,
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we add the summand b.1 to the defining equation of the names Ns1t and Nt1t because
we have the following push transitions: s b[1/ǫ]−−−−→ t and s b[1/ǫ]−−−−→ t. After a b-transition,
which happens when data element 1 is popped, we are done with the name and we
move to the next name in the sequential composition.

Note that only the names Nsǫ and Ntǫ have 1-summands and that they only occur
at the end of the sequential composition. Hence, our sequential specification is
transparency-restricted.

We can reduce this specification by removing occurrences of Ntǫ (for the right-
hand side of the defining equation of this name is just 1) and substituting occurrences
of Nt1t by b.1. We get

Nsǫ
def
= 1+ a.Ns1t ,

Ns1t

def
= b.1+ a.Ns1t · b.1 .

Now, we see that Ns1t = (1+ a.Ns1t) · b.1= Nsǫ · b.1 and therefore we have that
Nsǫ = 1+ a.Nsǫ · b.1 which is, up to renaming, equal to the specification we gave
before. ♦

We can generalise this example to a more formal construction and obtain the
following result.

THEOREM 4.35. For each pop choice-free pushdown automaton M there exists a trans-
parency-restricted sequential specification E, with initial name I, such that TE(I)↔∆

b

T(M). �

PROOF. This proof is an adaptation of the classical proof (see for example [HMU06,
Theorem 6.14]) that associates a context-free grammar with a given pushdown
automaton. Let M = (S,A,D,→,↑,↓) be a pop choice-free pushdown automaton.
By Theorem 4.8 we can ensure that M only has push and pop transitions. We define a
transparency-restricted specification E with for every state s ∈ S a name Nsǫ with the
following defining equation:

Nsǫ
def
=
∑

(s,a,⊥,d,t)∈→
d-pop to w

a.Ntdw ·Nwǫ [+ 1]s↓ ,

and for every state s a name Nsdt , if M has transitions that pop data element d leading
to the state t, with the following defining equation:

Nsdt

def
=
∑

(s,a,d ,ed ,u)∈→
e-pop to w

a.Nuew ·Nwdt +
∑

(s,a,d,ǫ,t)∈→
a.1 .

Recall that the state w is each time uniquely given because the PDA M is pop choice-
free. It is easy to see that the resulting specification is transparency-restricted.
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Assuming that that each di-pop leads to state si (1 ≤ i ≤ n), we leave it to the reader
to verify that the relation

R = { ((s,ǫ),Nsǫ) | s ∈ S } ∪
{ ((s, d1 . . . dn),Nsd1s1

· . . . ·Nsn−1dnsn
·Nsnǫ

) | s,∈ S, d1, . . . , dn ∈D }

is a divergence-preserving branching bisimulation and hence TE(N↑ǫ)↔∆
b
T(M). �

Thus, we have established a correspondence between a pop choice-free pushdown
automaton on the one hand, and transparency-restricted sequential specification on
the other hand. We thereby cast the classical result of the equivalence of pushdown
automata and context-free grammars in terms of transition systems and bisimulation.

COROLLARY 4.36. For every pop choice-free pushdown automata M there exists a
guarded transparency-restricted sequential specification E, with initial name I, such that
T(M)↔∆

b
TE(I), and vice versa. �

PROOF. The result follows from Theorems 4.35 and 4.31. �

The results presented above only hold for transparency-restricted sequential spec-
ifications. In [BCT08] we have established that we can have the correspondence for
all sequential specifications, if we step down to a weaker equivalence than branching
bisimilarity called contrasimilarity [Gla93, VM01]. In this paper the correspondence
was formulated between sequential specifications and a finite-state process put in
parallel with a forgetful stack process, thus simulating, up to contrasimilarity, the
specifications using a special kind of pushdown automaton. We conjecture that the
proof in [BCT08] can be adapted to show that all sequential specifications can be
simulated, up to contrasimilarity, using our standard definition of the pushdown
automaton (according to the FSES interpretation). For this, we have to move the
handling of transparency from the stack to the finite control. This can be done by
replacing forgetful popping by non-deterministic popping using τ-transitions.

CONJECTURE 4.37. For every sequential specification E, with initial name I, there exists
a pushdown automaton M such that T(M) is contrasimilar with TE(I). �

4.2.2 Decidability

It is well-known that it is undecidable whether two context-free grammars generate
the same language up to language equivalence. Baeten, Bergstra and Klop have
shown in [BBK93] that it is decidable for normed processes defined by guarded
recursive BPA-specifications, which they consider to be the process-theoretic coun-
terparts of context-free grammars in Greibach normal form, using the finer-grained
equivalence of strong bisimilarity. First, several simplified proofs of the result
in [BBK93] were presented (see [Cau86, HS91, Gro92]), and then the result was
extended by Christensen, Hüttel and Stirling in [CHS95] to the class of all processes
definable by recursive BPA-specifications. Later it has been proved independently
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by Bosscher, in [Bos97], and Srba, in [Srb01], that the problem of deciding whether
two BPA0-definable processes are strongly bisimilar can be reduced to the problem
of deciding whether two BPA-definable processes are strongly bisimilar. Both proofs
consist of reducing the problem of deciding whether BPA0-definable processes are
strongly bisimilar to the problem of deciding whether BPA-definable processes are
strongly bisimilar. It follows that strong bisimilarity remains decidable if 0 is added
to BPA.

In this section we will consider the decidability of strong bisimilarity on TSPτ,
which is an extension of BPA0 with prefixing and, more importantly, the constant 1.
While we would like to have a decidability result for branching bisimilarity (prefer-
ably divergence-preserving), we still leave it as an open problem. However, since
the decidability of bisimilarity is still an interesting question, we extend earlier work
and consider the obtained result as a stepping stone. We reduce the decidability
problem to the problem of deciding whether BPA0-definable transition systems are
bisimilar. This reduction is not trivial because the constant 1 is responsible for a
considerable increase of the expressiveness. We refer to [BLMT10] for a study of
the increased expressiveness when the constant 1 is added to some well-known
process algebras. Recall the sequential specification from Example 4.27 which has
an associated transition system (see Figure 4.16) that has unbounded branching due
to the presence of the constant 1.

First, we argue that the proof of [CHS95] for BPA is not, in general, robust
for the extension with 1. Then, we prove that bisimilarity is decidable on the
subclass of transition systems definable by the earlier mentioned restricted sequential
specification, a class that properly includes the BPA0-definable transition systems.

The proof by Christensen, Hüttel and Stirling

We argue that the decidability proof by Christensen, Hüttel and Stirling for BPA

in [CHS95] cannot easily be extended to TSPτ. An important notion in their proof
is the notion of bisimulation base. Roughly, a bisimulation base is a binary relation R

on processes/transition systems such that its congruence closure with respect to
sequential composition (i.e., the least equivalence on processes that contains R and
is compatible with sequential composition) is a bisimilarity. The crucial insight of
the proof is that for every finite recursive BPA-specification there exists a finite
bisimulation base, which consists of two parts:

1. The first part consists of all pairs (X,ξ) with a name X and a sequences ξ of
names bisimilar to it. In a BPA-specification, all names have a positive norm,
so there can only be finitely many sequences of names ξi with the same norm
as X.

2. The second part consists of all so-called indecomposable pairs, i.e., pairs (ξ,χ) of
bisimilar sequences of names that cannot be (non-trivially) split up into smaller
pairs (ξ1,χ1), . . . , (ξn,χn) such that ξ = ξ1 · · ·ξn and χ = χ1 · · ·χn.

Clearly, the congruence with respect to sequential composition that is generated
by the set of all such indecomposable pairs by definition contains all decompos-
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able pairs of bisimilar sequences of names. The argument that the collection of
indecomposable pairs is actually finite, is highly nontrivial.

In the original proof every name X has a positive norm, but now it can also have
norm 0. Consider for example the defining equation X

def
= a.X + 1. We have that X↔

Xk for any k, so the number of pairs is no longer finite.
Due to the presence of 1, the indecomposable pair (1 · Xξ, (a.1 + 1)Xξ) where

X
def
= a.X+ 1 and ξ can be any sequence, we have an infinite number of indecompos-

able pairs. Hence, the bisimulation base becomes infinite.
In [Srb01], Srba uses a different approach that reduces the decidability of BPA0-

definable processes to BPA-definable processes. Srba gives a reduction that replaces
the deadlocked process 0 in some specification by the name D with the defining

equation D
def
= d·D and provides a relation between the original and translated process.

Using this bisimulation preserving translation relation between BPA0 and BPA and
reusing the previously mentioned result by Christian, Hüttel and Stirling for BPA, he
shows the decidability of bisimilarity for BPA0.

In our setting, a straightforward reduction from TSPτ-definable processes to
BPA0-definable processes does not seem possible due to the extra expressive power
added by 1-summands. Note that replacing prefixing by sequential composition, and
replacing a 1-summand by a

p
-summand for some fresh atomic action

p
(the explicit

termination action) does not work in general because it may result in intermediatep
-actions in a BPA0-defined process that are impossible to relate to intermediate

termination in the original TSPτ-defined process.

EXAMPLE 4.38. Consider the following sequential specification:

X
def
= a.1+ 1 ,

Y
def
= b.1 .

Now, let X′
def
= a +

p
and Y′

def
= b be the translated versions for BPA0. If we have that

some Z↔ XY = a.b.1+ b.1, then it should hold for our translation that Z′↔ X′Y′

where Z′
def
= a · b+ b. However, X′Y′ = a · b +p · b and here it is possible to execute

the
p

-action while Z′ cannot. Obviously, they are not bisimilar. Also, the
p

-action is
meant to signal termination, but X′Y′ can still execute the b-action after it. ♦

So, these intermediate
p

-actions that pop up due to this kind of translation form
a problem. To ensure that these intermediate

p
-actions do not occur, we have

to consider a restricted set of sequential specifications. An obvious choice is the
transparency-restricted sequential specifications introduced in Definition 4.28 as they
will not have intermediate termination behaviour.

We divide the set of names N for some sequential specification into disjoint subsets
called the finitely normed names Nfin = {X ∈ N | X is normed} and the infinitely
normed names N∞ = N −Nfin. We can further partition the set of finitely normed
names Nfin into the transparent finitely normed names N

+1

fin
and the opaque finitely

normed names N−1

fin
.
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A useful property of the class of sequential specifications is that if a name has an
infinite norm then by definition we have to end up with another name that has infinite
norm after an action has been executed. As a result everything after an infinitely
normed name can be removed preserving bisimilarity:

ξXη↔ξX if X ∈ N∞ .

Both this property and the above mentioned transparency-restrictedness leads us
to the fact that we can restrict ourselves from here on to states where the labels,
which are sequences of names, are elements of the set (N−1

fin
)
∗
N∞∪ (N−1

fin
)
∗
N
+1

fin
∪ (N−1

fin
)
∗

or using a more compact notation: {1}∪(N−1

fin
)
∗
N. Recall that the empty sequence for

a sequential composition is denoted by 1.

Deciding strong bisimilarity

As mentioned before, the result by Srba in [Srb01] involves a reduction from BPA0

to BPA. In this section we give a reduction from TSPτ to BPA0 that preserves and
reflects bisimilarity defined by a transparency-restricted sequential specification E.

We recall the syntax of BPA0 and give the set of BPA0-process expressions P(BPA0)

by the following abstract syntax:

P ::= 0 | a | N | P + P | P · P ,

where a ranges over the set of atomic actions A, and N ranges over the set of names N.
So, with respect to TSPτ we have no constant 1 and prefixing. Note that Srba actually
uses the symbol δ instead of 0 to denote the deadlocked process.

Because BPA0 has no explicit termination and prefixing, it has different opera-
tional rules. The structural operational semantics of BPA0 are given in Table 4.1
below.

a a−−→
p

p a−−→ p′

p · q a−−→ p′ · q
p a−−→

p

p · q a−−→ q

p a−−→ p′

p + q a−−→ p′
q a−−→ q′

p + q a−−→ q′
p a−−→

p

p + q a−−→
p

q a−−→
p

p + q a−−→
p

p a−−→ p (N
def
= p) ∈ E

N a−−→ p′
p a−−→

p
(N

def
= p) ∈ E

N a−−→
p

TABLE 4.1: Operational rules for a recursive BPA0-specification E (a ∈Aτ).
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We assume that the specification E is transparency-restricted and in sequential
normal form. Now, we reduce the decision problem to the problem of decidability of
bisimilarity in BPA0 as shown in [Srb01].

For the following proofs we fix a fresh action
p

such that
p 6∈ A. We define

Ap = A∪ {p} and the translation function f : P(TSPτ)→ P(BPA0) as follows:

f (0) = 0 , f (1) =
p

,

f (p + q) = f (p) + f (q) , f (p · q) = f (p) · f (q) ,

f (X) = X , f (a.p) =

¨
a if p = 1 ,

a · f (p) otherwise .

Thus, f simply replaces the 1-summands of each transparent name with a
p

-
summand and changes prefixes into sequential compositions.

If we apply f to the terms of the specification E we get the translated specification

E′ = {Xi

def
= f (pi) | Xi

def
= pi ∈ E }. It can be easily seen that the translated guarded

recursive specification has the following GNF:

X
def
=
∑

i∈IX

ai · ξi (+
p
) for all X ∈N .

We introduce the variant of (strong) bisimilarity often used in conjunction with
BPA0 that does not take termination into account: let us write ξ↔6 ↓ χ iff (ξ,χ) is in
a binary relation R satisfying, for all a ∈Ap, conditions 1 and 2 of Definition 2.4 (on
page 10).

Recall that the structural operational semantics given in Tables 2.1 and 4.1 are
actually parametrized by a specification E. For clarity we shall write −−→E for the
transitive relation and ↓E for the termination predicate associated with E and −−→E′

for the transitive relation associated with E′.

LEMMA 4.39. Given the specification E and the translated version E′ the following holds
for every ξ:

1. ξ a−−→E ξ
′ iff ξ a−−→E′ ξ

′ with a 6=p,

2. ξ↓E iff ξ
p
−−→E′

p
. �

PROOF. We prove both statements separately, first from left to right, then from right
to left.

1. ⇒ If ξ a−−→E ξ
′ then there exist ρ,η and some name X that has the defining

equation with a summand a.ξi for some i ∈ IX such that ξ = ρXη, X a−−→ξi

and ξ′ = ξiη. Note that by transparency-restrictedness, ρ = 1 and thus
ξ = Xη. Then, also in the translated specification X has a summand a · ξi

and hence ξ = Xη a−−→E′ ξiη = ξ
′
i .

⇐ If ξ a−−→E′ ξ
′ with a 6=p then, as in the previous case, ξ = Xη, where η may

be empty, but now X has a summand a · ξi for some i ∈ IX . So ξ′ = ξiη,
and similarly we have the summand a.ξi in the original defining equation
and hence ξ = Xη a−−→E ξη = ξ

′.
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2. ⇒ If ξ↓E, then due to transparency-restrictedness ξ consists of one transpar-
ent name X. This means that the defining equation of X has a 1-summand
and consequently the translated version has has a

p
-summand. Therefore

ξ
p
−−→E′

p
.

⇐ If ξ
p
−−→E′

p
, then ξ = X for some name X. This means that the defining

equation of X has a
p

-summand and consequently the original version has
a 1-summand in E. Therefore, ξ↓E. �

Using the properties proved in the lemma above, we can establish the decidability
result.

THEOREM 4.40. Let E be a transparency-restricted sequential specification and ξ,χ be
sequences of names reachable from some initial name of E. Then it is decidable whether
ξ↔χ. �

PROOF. Let E′ be the translated recursive specification f (E). Because of [Srb01] it is
decidable whether ξ↔6 ↓ χ in E′. To be able to decide whether ξ↔ χ it suffices to
show that ξ↔χ in E iff ξ↔6 ↓ χ in E′.

⇒ Suppose ξ ↔ χ. To establish that ξ ↔6 ↓ χ it suffices to prove that the
relation↔6 ↓ satisfies conditions 1 and 2 of Definition 2.4 (on page 10) for all
a ∈Ap and all ξ,χ ∈N∗. We will first show that condition 1 holds; the proof of
the satisfaction of condition 2 then follows symmetrically. For condition 1 we
distinguish two cases:

(a) Suppose a ∈ A. If ξ a−−→E′ ξ
′ and a 6= p then by Lemma 4.39(1) we have

ξ a−−→E ξ
′. Since ξ↔χ in E, we also have χ a−−→E χ

′ and ξ′↔χ ′ in E. So,
by Lemma 4.39(1) we also have χ a−−→E′ χ

′ and ξ′↔χ ′ in E.

(b) Suppose a =
p

. If ξ
p
−−→E′

p
then by Lemma 4.39(2) we have ξ↓E. Since

ξ↔χ in E also χ↓E and by Lemma 4.39(2) we have χ
p
−−→E′

p
.

We have shown for all ξ,χ in E that if the pair (ξ,χ) is in the relation↔, then
conditions 1 and 2 of Definition 2.4 hold and hence ξ↔6 ↓ χ in E′.

⇐ Suppose ξ ↔6 ↓ χ. To establish that ξ ↔ χ it suffices to prove that the
relation↔6 ↓ is a bisimulation meeting all conditions of Definition 2.4 for all
a ∈ A and ξ,χ ∈ N

∗. We distinguish three cases based on the conditions of
Definition 2.4:

1. If ξ a−−→E ξ
′ then by Lemma 4.39(1) we have ξ a−−→E′ ξ

′ with a 6= p.
Since ξ↔6 ↓ χ in E′, we also have χ a−−→E′ χ

′ and ξ′↔6 ↓ χ ′ in E′. So, by
Lemma 4.39(1) we also have χ a−−→E χ

′ and ξ′↔6 ↓ χ ′ in E′.

2. By an analogous argument as in the previous case.

3. If ξ↓E then by Lemma 4.39(2) we have ξ
p
−−→E′

p
. Since ξ↔6 ↓ χ in E′ also

χ
p
−−→E′

p
and by Lemma 4.39(2) we have χ↓E.

We have shown for any ξ,χ in E that if the pair (ξ,χ) is in the relation↔6 ↓ ,
then all conditions of Definition 2.4 hold and hence ξ↔χ. �
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COROLLARY 4.41. Bisimilarity is decidable on transparency-restricted sequential speci-
fications. �

In future work, this decidability result could be extended to the decidability
of divergence-preserving branching bisimilarity. Preferably we will also find an
extension to decidability for the full class of sequential specifications.

4.3 Explicit Interaction

If we consider the definition of the pushdown automaton, we can discern two
components: the finite control and the stack memory. The latter of these two
components, the stack memory, seems to have a rather informal definition. In the
previous section we have seen that the stack, first given as a pushdown automaton
and pushdown transition system, can also be defined by a sequential specification. If
we put this specification in parallel with a specification representing the finite control,
we can make the interaction with the stack within a pushdown automaton more
explicit.

We first consider pushdown automata according to the FSES interpretation. We
show that we can translate the finite control of a PDA to a linear specification.
Once put in parallel with the sequential specification of the stack, we can define
all pushdown transition systems according to the FSES interpretation. Thereafter, we
shall consider the other direction.

Recall that transparency-restricted sequential specifications are simulated by
pushdown automata. Because we can subsequently give specifications for these
pushdown automata, consisting of a linear specification in parallel with the sequential
specification of a stack, we can say that every transparency-restricted sequential
specification can be defined by a linear specification in parallel with a stack.
See also [BCT08] for earlier work that investigated the correspondence between
sequential specifications and specifications of finite control in parallel with a stack.
The paper shows under what circumstances we can extend the set of pushdown
transition systems to incorporate transition systems with unbounded branching. A
(partially) forgetful stack is used to deal with transparent names on the stack. Note
also that the paper does not require the recursive specifications to be transparency-
restricted, but at the cost of using a weaker equivalence (namely contrasimulation)
in some cases.

We also cannot obtain the same correspondence result for pushdown automata
according to the FS interpretation. Following the reasoning as given in the proof
of Theorem 4.26 there exists no sequential specification for the always-terminating
stack. This is something that is required if we want to put finite control in parallel
with this specification and allow for termination whenever the finite control can do so.
(Clearly, the FS interpretation only puts termination conditions on the finite control,
in contrast with the FSES and ES interpretation that also put conditions on the stack.)
We will use a different approach and use a recursive TCPτ-specification for the stack
that can always terminate. This, of course, comes at the cost of losing the link with
sequential specifications that we did have for the FSES interpretation.
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4.3.1 According to the FSES Interpretation

We will show that, up to divergence-preserving branching bisimilarity, every push-
down automaton can be specified using the process theory TCPτ. We do this by
showing, for any given PDA, the construction of a finite recursive TCPτ-specification
that defines its behaviour. Our specification will consist of a linear specification of a
process that is a translated version of the finite control of the PDA, and a sequential
specification of stack memory. We shall prove that the parallel composition of these
specifications specifies a transition system that is divergence-preserving branching
bisimilar with the transition system associated with the PDA. We remark that we
actually only use TCPτ to arrange the communication between the linear finite
control process and the sequential stack process.

Below we will give a translation of the finite control of a PDA into a linear
specification Efc and then show that, combined with the sequential specification of
the stack process ES , the correspondence with the original PDA M holds. But first,
recall the sequential specification ES of the stack over D:

S
def
= 1+ o!⊥.S +
∑

d∈D
i?d.S6⊥ · o!d.S ,

S6⊥
def
= 1+
∑

d∈D
i?d.S6⊥ · o!d.S6⊥ .

Let M = (S,A,D,→,↑,↓) be a pushdown automaton. By Theorem 4.8 we can
assume that M only has push and pop transitions. We can now define the linear
specification Efc, capturing the finite control, i.e. the transition relation, of M. For
each s ∈ S and d ∈ D⊥ we add the name Cs,d . Each name Cs,⊥ has the following
defining equation:

Cs,⊥
def
=
∑

(s,a,⊥,d,t)∈→
a.Ct,d [+ 1]s↓ ,

which corresponds to the empty-test (push) transition and termination when the PDA
is in state s and the stack is empty. Each name Cs,d (d ∈D) has the following defining
equation:

Cs,d
def
=
∑

(s,a,d ,ed ,t)∈→
a.i!d.Ct,e +
∑

(s,a,d ,ǫ,t)∈→
a.
∑

e∈D⊥

o?e.Ct,e ,

which corresponds, respectively, to the push and pop transitions when the PDA is in
state s and data element d is on top of the stack.

Note that the top of the stack is not on the stack but retained by the finite control
process.

THEOREM 4.42. For every pushdown automaton M according to the FSES interpretation
there exists a recursive TCPτ-specification EM and process expression p defined by a linear

specification such that T(M)↔∆
b
TEM
(
�

p ‖ S
�

i,o). �
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PROOF. We choose M = Efc ∪ ES , where Efc is constructed for M as described above.
We present some observations from which it is fairly straightforward to establish that
T(M)↔∆

b
TE∪ES

(
�

C↑,⊥ ‖ S
�

i,o
). In our proof we abbreviate the process expression

S · i!dn.S · · · i!d1.S by Sdn···d1
, with, in particular, Sǫ = S. (Recall the infinite specification

of the stack given on page 53.)
First, note that whenever T(M) has a transition (s, d) a−−→ (t,ǫ), then

∂i,o(Cs,d ‖ Sǫ)
a−−→ ∂i,o((
∑

e∈D⊥

o?e.Ct,e) ‖ Sǫ)
o?!⊥−−→ ∂i,o(Ct,⊥ ‖ Sǫ) .

The abstraction operator τi,o(_) will rename the transition labelled o?!⊥ into a τ-
transition. So,

�
Cs,d ‖ Sǫ
�

i,o
a−−→


(
∑

e∈D⊥

o?e.Ct,e) ‖ Sǫ




i,o

τ−−→
�

Ct,⊥ ‖ Sǫ
�

i,o
.

This τ-transition is inert in the sense that it does not preclude any observable
behaviour that was possible before the τ-transition. Such inert τ-transitions can be
omitted while preserving branching bisimilarity.

Second, note that whenever T(M) has a transition (s, dζ) a−−→ (t,ζ) with ζ
nonempty, say ζ = eζ′, then

∂i,o(Cs,d ‖ Sζ)
a−−→ o?!e−−→∂i,o(Ct,e ‖ Sζ′) ,

and, since the second transition is the only step possible after the first a-transition,
the τ-transition resulting from applying τi,o(_) is again inert.

Third, note that whenever T(M) has a transition (s, dζ) a−−→ (t, edζ), then

∂i,o(Cs,d ‖ Sζ)
a−−→ i?!d−−→∂i,o(Ct,e ‖ Sdζ) ,

and again the τ-transition resulting from applying τi,o(_) is inert.
Finally, note that whenever T(M) has a transition (s,ǫ) a−−→ (t, e), then

∂i,o(Cs,⊥ ‖ S) a−−→ ∂i,o(Ct,e ‖ Sǫ) .

Only, single inert τ-steps are removed, no τ-loops are introduce nor removed.
Therefore, we have that divergence is preserved. �

Now, for the other direction. We can show that if we have a process defined by a
linear specification that communicates with a stack, we can find a PDA that simulates
the behaviour of the two specifications put in parallel.

THEOREM 4.43. For every linear specification E and linear process expression p there
exists a pushdown automaton M according to the FSES interpretation such that
TE∪ES

(
�

p ‖ S
�

i,o)↔∆
b
T(M). �

PROOF. Let E be a linear specification and let p be a linear process expression. We
define a pushdown automaton M as follows:
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– The set of states, the action alphabet, and the initial and final states are the
same as those of the transition system TE(p) (which is a finite automaton).

– The data alphabet is the set of data elements D of the presupposed recursive
specification of a stack.

– Whenever s a−−→t in TE(p), and a 6= i!d, o?d (d ∈D), then s a[⊥/ǫ]−−−−→ t and s a[d/d]−−−−→
t for all d ∈D;

– whenever s i!d−−→ t for some d ∈ D in TE(p), then s τ[⊥/d]−−−−→ t and s τ[e/de]−−−−−→ t for
all e ∈D;

– whenever s o?d−−→ t for some d ∈D in TE(p), then s τ[d/ǫ]−−−−→ t.

We omit the proof that every transition of TE∪ES
(
�

p ‖ S
�

i,o) can be matched by a

transition in T(M) in the sense required by the definition of divergence-preserving
branching bisimilarity. �

We have seen in Section 4.2.1 that (transparency-restricted) sequential specifica-
tions can be simulated by a PDA. We have also seen above that each PDA can be
defined by a linear specification for the finite control of the PDA and a sequential
specification of stack memory, combined in a single specification that allows for
communication between both components. Indirectly, we have established that
each (transparency-restricted) sequential specification can be written as a linear
specification communicating with a stack. Therefore, we can consider the stack, with
its sequential specification, as the canonical sequential process.

COROLLARY 4.44. For every transparency-restricted sequential specification E and se-
quential expression p there exists a linear specification Efc and linear process expression q

such that TE(p)↔∆
b
TEfc∪ES

(
�

q ‖ S
�

i,o). �

PROOF. The result follows from Theorems 4.35 and 4.42. �

The same result was obtained directly for opaque sequential specifications
and also for all sequential specifications but for a weaker equivalence, namely
contrasimulation, in [BCT08].

4.3.2 According to the FS Interpretation

If we want to make the interaction explicit in a pushdown automaton according to
the FS interpretation, we need a stack that can always terminate. As was mentioned
before, there is no sequential specification for such a stack. Instead, we present a
new stack process that can terminate regardless of its contents. This finite recursive
TCPτ-specification is inspired by the specification of a queue proposed by Baeten and
Bergstra in [BB88], which has in turn its origins in the CSP book by Hoare [Hoa85].
It is similar to the tape process that we will see later on in Chapter 6; the stack can
be seen as a one-sided tape of which we may only inspect and/or replace the top
element.
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DEFINITION 4.45. The recursive TCPτ-specification ES↓ of the always-terminating

stack over D, with initial name S
i,o
j,p, is defined as follows:

S
i,o
j,p

def
= 1+ o!⊥.S

i,o
j,p +
∑

d∈D
i?d.
h

T
i,o
j,p d ‖ S

j,p

i,o

i
j,p

,

T
i,o
j,p

d
def
= 1+ o!d.
∑

f∈D⊥

p? f .T
i,o
j,p

f +
∑

e∈D
i?e. j!d.T

i,o
j,p

e (d ∈D) ,

T
i,o
j,p
⊥ def
= 1+ o!⊥.T

i,o
j,p
⊥+
∑

d∈D
i?d.T

i,o
j,p

d ,

T
j,p

i,o
d

def
= 1+ o!d.
∑

f∈D⊥

p? f .T
j,p

i,o
f +
∑

e∈D
i?e. j!d.T

j,p

i,o
e (d ∈D) ,

T
j,p

i,o
⊥ def
= 1+ o!⊥.T

j,p

i,o
⊥+
∑

d∈D
i?d.T

j,p

i,o
d . △

Because this stack needs to be a drop-in replacement for our earlier defined
stack, it has the same interface: it also receives data elements that are pushed over
channel i, sends data elements that are popped over channel o, and can signal over
channel o if the stack is empty.

The first time the stack receives a data element, it splits into a top element
retaining the data element in parallel with the empty stack. From this moment on,
every time a data element is received, a new top element is split off “to the right” to
retain the data element that is being replaced by the newly received data element.
See Figure 4.21 for a diagram of the always-terminating stack process; depicted is
the state when a data element 1 has been pushed.

T
j,p

i,o
1 S

i,o
j,p

i

o

j

p

FIGURE 4.21: Diagram of the always-terminating stack specification.

.

If a data element is popped from the left-most top element, all data elements
move one position to the left as well. See for example the following trace where data
elements 1 and 0 are pushed and then popped:

S
i,o
j,p

i?0−−։
h

T
i,o
j,p

0 ‖ S
i,o
j,p

i
j,p

i?1−−։
h

T
i,o
j,p

1 ‖
�

T
j,p

i,o
0 ‖ S

j,p

i,o

�
i,o

i
j,p

o!1−−։
h

T
i,o
j,p

0 ‖
�

T
j,p

i,o
⊥ ‖ S

j,p

i,o

�
i,o

i
j,p

o!0−−։
h

T
i,o
j,p
⊥ ‖
�

T
j,p

i,o
⊥ ‖ S

j,p

i,o

�
i,o

i
j,p

At the end, we are left with two empty cells. However, it can easily be shown thath
T

i,o
j,p
⊥ ‖ S

j,p

i,o

i
j,p
↔∆

b
S

i,o
j,p. Thus, the empty cells can be collapsed and removed.

We now reconsider the correspondence results we had for the FSES interpretation,
for the FS interpretation. If we go from FSES to ES, we drop the empty stack
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requirement; termination needs to happen if the finite control can terminate. We can
obtain our results by just replacing the terminating-on-empty stack by the always-
terminating stack defined above.

THEOREM 4.46. For every pushdown automaton M according to the FS interpretation
there exists a recursive TCPτ-specification EM and process expression p such that

T(M)↔b TEM
(
�

p ‖ S↓
�

i,o
). �

PROOF. We choose M = Efc ∪ ES↓ , where Efc is constructed for M as described in
Section 4.3.1. The result follows from Theorem 4.42 and the fact that we use ES↓

instead of ES . �

Now, for the other direction.

THEOREM 4.47. For every linear specification E and linear process expression p there
exists a pushdown automaton M according to the FS interpretation such that
TE∪E

S↓
(
�

p ‖ S
�

i,o)↔∆
b
T(M). �

PROOF. The result follows from Theorem 4.43 and the fact that we use ES↓ instead
of ES . �

4.4 Conclusions

In this chapter we have investigated the classical correspondence result between
pushdown automata and context-free grammars. To be able to treat this result
in a process-theoretic setting, we have associated pushdown transition systems
with pushdown automata. In the literature [Sud88, Sip97, HMU06] two distinct
termination conditions for pushdown automata are considered: termination on
empty stack (ES) and on final state (FS). We have additionally considered termination
on both final state and empty stack (FSES). It is well-known that up to language
equivalence it does not matter which termination condition is used as they all yield
the same class. We can obtain the pushdown languages if we take the pushdown
transition systems up to language equivalence. Figure 4.22 gives a schematic
overview of the classical correspondence results.

PDA

pushdown

transition systems
FS/FSES/ES

context-free
grammarsThm. 4.23

FIGURE 4.22: Classical correspondence results from automata theory.

If we reconsider all results up to (divergence-preserving) branching bisimilarity,
we get a much more contrived picture. First, we get different classes of pushdown

– 73 –



4.4. CONCLUSIONS

transition systems if we take different termination conditions. The class according to
the ES interpretation is, up to divergence-preserving branching-bisimilarity, a proper
subclass of the class according to the FSES interpretation. Only if consider pushdown
automata that are initially terminating, then the class of pushdown transition
systems according to the ES interpretation coincides with the class according to the
FSES interpretation. The class according to the FSES interpretation is, also up to
divergence-preserving branching bisimilarity, a proper subclass of the class according
to the FS interpretation. Because of the class differences, we have considered the
correspondence results for the FSES and FS classes separately.

We have seen that in our process-theoretic setting context-free grammars can be
defined as finite recursive TSPτ-specifications, which we call sequential specifica-
tions. To obtain the correspondence between pushdown automata and sequential
specifications we have applied two restrictions. First, we only consider transparency-
restricted sequential specifications as a way to prevent unbounded branching.
Secondly, we ensure that the pushdown automata are pop choice-free, because it can
be shown that there exist non-pop choice-free pushdown automata for which there
is no sequential specification. If these two restrictions are applied, we can obtain a
correspondence.

Because transparency-restricted sequential specifications play an important role in
this chapter, we can wonder if we can decide if two sequential specifications have the
same associated transition system up to divergence-preserving branching bisimilarity.
We have shown that this is the case for (strong) bisimilarity, extending earlier work
for BPA- and BPA0-specifications, which are specifications in subtheories of TSPτ.

We have chosen to translate λ-productions (or ε-productions) in context-free
grammars by 1-summands in sequential specifications. This is mainly done to stay
in line with the previous chapter and allow for intermediate termination. However, a
different choice could have been to use τ-summands instead. In this case the resulting
specification language would always generate opaque sequential specifications and
thus have a full correspondence with pushdown automata according to the (FS)ES
interpretation.

From a process-theoretic perspective it makes sense to make the interaction in a
PDA explicit. We can do this by giving a linear specification representing the finite
control of the PDA and put it in parallel with a specification of a stack, allowing
communication over an input and output channel for pushing and popping. We have
first established this correspondence for pushdown automata according to the FSES
interpretation.

Figure 4.23 presents a schematic overview of the correspondence results for the
FSES interpretation from a process-theoretic point of view. Note that there is an in-
direct correspondence between transparency-restricted sequential specifications and
the explicit interaction. Because the stack can be defined by a transparency-restricted
sequential specification, and all transparency-restricted sequential specifications can
be given as a finite-state process communicating with this stack, the stack can be
considered as the canonical sequential process.

For the FS interpretation we have seen that there exist pushdown transition
systems that have no sequential specification. Hence, we lack a correspondence
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result in this case. Note that if we have a PDA that has a pushdown transition
system according the FS interpretation that can also be given according to the FSES
interpretation, we of course do have a correspondence as described above. The
pushdown transition system for the stack according to the FS interpretation also has
no sequential specification. Therefore, we resort to a TCPτ-specification of the stack
to make the interaction explicit.

See Figure 4.24 for a schematic overview of the correspondence results according
to the FS interpretation. Note that, clearly, we also lack the indirect correspondence
result between sequential specifications and the explicit interaction.

4.4.1 Future Work

First of all, transparency-restrictedness is too strict. There are finite sequential
specifications that are not transparency-restricted but do not have unbounded
branching. It should be possible to find a syntactic requirement on sequential
specifications such that just a finite sequence of transparent names can be stacked.

On the side of the pushdown automata it is unknown if one can generate push-
down transition systems, up to branching bisimilarity, with or without divergence-
preservation, that have unbounded but finite branching. Additionally, we have also
not been able to establish that our result is optimal in the sense that a pushdown
process is definable by a sequential specification only if it is pop choice-free, although
we conjecture that this is the case.

In the previous chapter we have seen that the class of deterministic finite automata
accepts the same languages as the class of non-deterministic finite automata, but
forms a subclass with respect to branching bisimilarity. It is known that for pushdown
automata the languages accepted by deterministic PDAs is a subclass of the languages
accepted by non-deterministic PDAs. Intuitively, this is probably also be the case up to
branching bisimilarity. However, it would be worthwhile to define deterministic PDAs
in our framework and investigate this result using pushdown transition systems.

In [BCT08] we have shown that sequential specifications with unbounded
branching can have a correspondence, up to contrasimulation, with a finite-state
process communicating with a (partially) forgetful stack. These results could be split
up as follows: first a correspondence between sequential specifications and PDAs
with a special kind of termination, namely on final state and when the stack contains
zero-or-more transparent data elements, and then a correspondence between these
PDAs with a special kind of termination and a finite control put in parallel with the
(partially) forgetful stack.
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PDA

pop choice-
free

sequential
specifications
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Thm. 4.35

Thm. 4.31

Thm. 4.42 Thm. 4.43

FIGURE 4.23: Correspondence results for the FSES interpretation.
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FIGURE 4.24: Correspondence results for the FS interpretation.
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Chapter 5

Parallel Pushdown Systems

In this chapter we discuss systems that are a variation on the pushdown systems
described in the preceding chapter. Pushdown systems are based on the notion of a
pushdown automaton, consisting of finite control and a stack memory. On the stack
memory data elements are stored in a sequence and one can only inspect, retrieve,
or stack on the top element. In this chapter, we will modify the memory to enable
the retrieval of a specific element regardless of its place in the sequence: we let go
of the ordered structure and view the sequence of data elements as commutative,
i.e. all elements are stored “in parallel”; the memory effectively becomes a bag. We
call a pushdown automaton where the stack memory is replaced by a bag memory a
parallel pushdown automaton. This notion was originally defined by [Mol96] for the
class of parallel labelled rewrite systems, i.e. rewrite systems modulo commutativity
of concatenation. It has also been called “bag automaton” and “multiset automaton”,
but we prefer the original name, as it emphasises the relation to pushdown automata,
its parallel nature, and not the type of memory that has been used to define or to
implement it.

In Section 5.1 we define the parallel pushdown automaton and its associated
transition systems. In the definition of the parallel pushdown automaton, the stack
memory is replaced by the bag memory. We shall discuss the consequences of
this adaptation. Then, similarly as in the previous chapter, we shall investigate
different termination conditions: termination on empty bag (EB), on final state
(FS), and on both final state and empty bag (FSEB). We will see that the class of
pushdown transition systems with termination on empty bag is, up to divergence-
preserving branching bisimilarity, a proper subclass of the class with termination on
both final state and empty bag. Furthermore, the class with termination on both
final state and empty bag is incomparable to the class with termination on final state,
again up to divergence-preserving branching bisimilarity. Note that these results are
different from what we have seen for pushdown automata in Section 4.1.1 (see also
Figure 4.14 on page 49 for the overview).

In Section 5.2 we revisit the correspondence between pushdown automata and
context-free grammars, but now in our parallel/bag-oriented setting. We define our
commutative context-free grammars as finite recursive BCPτ-specifications, which
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we call basic parallel specifications. Here, the adjective “basic” refers to the fact that
we do not allow for communication between parallel components. We will show
that opaque and transparent basic parallel specifications can be simulated by parallel
pushdown automata, according to the FSEB and FS interpretation respectively. In the
case of a specification that is not completely opaque nor transparent we will introduce
a new termination condition to the parallel pushdown automaton: termination on
both final state and transparent bag (FSTB). The bag is considered to be transparent
if it only contains data elements that are marked as transparent. We show that for
this termination condition we can simulate any basic parallel specification with a
parallel pushdown automaton. For the other direction it was shown by Christensen
in [Chr93] that only single-state parallel pushdown automata can be given, up to
language equivalence, by a basic parallel specification. We will restrict ourselves to
this small subclass of automata and show how they can be defined by basic parallel
specifications.

We also investigate the decidability of strong bisimilarity on processes defined
by basic parallel specifications. We obtain our results by extending earlier results
for recursive specifications over BPP, which is a subtheory of BCPτ. Christensen,
Hirshfeld and Moller proved in [CHM93] that bisimilarity is decidable on processes
definable in BPP. The bulk of their proof consists of defining a sound and complete
tableau proof system for proving whether two BPP-definable processes are bisimilar.
In this section we adapt their tableau proof system with the constant 1 to prove
decidability of bisimilarity on processes definable by a basic parallel specification.
We find that the adaptation requires a careful treatment of the distinction between
successful and unsuccessful termination, but it does not result in the kind of diffi-
culties we encountered in the case of sequential specifications. In Section 4.2.2 we
only obtained a decidability result for a subclass of the sequential specifications: the
transparency-restricted sequential specifications. We shall prove that our extension
of the original decidability result for recursive BPP-specifications holds for all basic
parallel specifications.

In Section 5.3 we make the communication between the finite control and the bag
in a parallel pushdown automaton explicit. We show that every parallel pushdown
automaton can be defined by a finite recursive TCPτ-specification consisting of a
linear specification representing the finite control and a specification of a bag process.
Depending on the chosen termination condition we use a variant of the bag process
defined by a basic parallel specification. The bag may therefore be considered as the
canonical process for this class of specifications.

Some material in this chapter is inspired by the following publication:

[BCT09] J. C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. “A Basic Parallel
Process as a Parallel Pushdown Automaton”. In: Proceedings of EXPRESS
2008. Ed. by D. Gorla and T. Hildebrandt. ENTCS 242. Elsevier, 2009,
pp. 35–48.
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5.1 Parallel Pushdown Automata

Before we start with the definition of the parallel pushdown automaton, we recap the
notion of multisets and introduce the notation used in this chapter.

A multiset over some set of elements X , denoted by M(X ), is a function from X

to the natural numbers N. For a multiset µ we write µ(a) = n when the element a

occurs n times in µ. For two multisets µ,ν we write µ⊎ν to denote union of multisets
such that (µ ⊎ ν)(a) = µ(a) + ν(a). We denote the difference of multisets µ − ν such
that (µ − ν)(a) = µ(a)− ν(a) under the assumption that µ(a) ≥ ν(a). Furthermore,
we use a ∈ µ to denote the statement that µ(a) ≥ 1, and µ ⊆ ν to denote that
µ(a)≤ ν(a) for all a. The multiset ; is the empty multiset, i.e. ;(a) = 0 for all a. If the
elements of a multiset are enumerated, they are written in between double brackets,
e.g. ¹a, c, a, bº, analogous to set element enumeration. The singleton multiset is
denoted by ¹aº.

In the literature, a multiset is also often referred to as a bag. To avoid confusion,
we use the term “multiset” to refer to the mathematical object described above and
the term “bag” to refer to the type of memory that stores a multiset.

We use a definition of the parallel pushdown automaton that is very similar to
the definition of the pushdown automaton (Definition 4.1 on page 38). The main
difference is the implicit replacement of the stack memory by the bag memory and
subsequently the usage of multisets of symbols instead of strings.

Interestingly, there is more to the replacement of the stack memory by the bag
memory. First of all, in the case of the pushdown automaton, transitions can be
taken based on the current state and top element of the stack. Since there is no
fixed order in the bag memory, it does not have a top element; it is possible to
remove any element. (Note that, in the case of the bag, we talk about inserting and
removing, rather than pushing and popping.) So, transitions in a parallel pushdown
automaton are taken based on the current state and whether some data element
d ∈ D is available in the bag. Secondly, when the stack is empty a pop of the top
element is not possible. Due to its sequential structure, stack memory can been easily
equipped with an empty-test: it returns a special symbol (⊥) if it is empty when
popped. We choose not to equip the bag memory with an empty-test. We will later
see that if if we want to be able to define the bag by means of the parallel operator,
it has no sequential structure; it cannot tell by itself if it is empty. The only way
to check that it is empty would be to try to remove each type of data element and
count. Thirdly, recall that pushdown transitions traditionally consist of an action, a
removal and an insertion. However, since in case of parallel pushdown transitions
removals are impossible when the bag is empty, which we cannot determine, we
should allow for pushdown transitions without removal. Therefore, we augment the
set of data elements D with the special symbol ∗ to signify that we do not remove a
data element from the bag, assuming that ∗ 6∈ D; we denote the set D ∪ {∗} of bag
symbols by D∗.

Taking these considerations into account, we define the parallel pushdown
automaton – inspired by Moller’s definition in [Mol96] – as follows.
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DEFINITION 5.1. A parallel pushdown automaton (PPDA) M is defined as a six-tuple
(S,A,D,→,↑,↓) where

1. S is a finite set of states;

2. A a finite set of actions;

3. D a finite set of data;

4. → ⊆ S×Aτ ×D∗ ×M(D)× S is an Aτ ×D∗ ×M(D)-labelled transition relation
on S,

5. ↑ ∈ S is the initial state, and

6. ↓ ⊆ S is the set of final states. △

Similarly to Definition 4.1 (on page 38), if (s,a, d,µ, t) ∈ →, we write s a[d/µ]−−−−→ t.
But now the intuitive meaning of this transition is that if the parallel pushdown
automaton M is in state s and can remove a data element d from (anywhere in)
the bag, then it may do so while performing the action a, replacing datum d by the
multiset of data µ and moving to state t. In the case that d = ∗, we have a transition
of the form s a[∗/µ]−−−−→ t, which means that if M is in state s, it can insert the multiset
of data µ into the contents of the bag while performing the action a and moving to
state t without inspecting or taking anything from the bag.

In the previous chapter we discussed different termination conditions of the
pushdown automata in Section 4.1.1 and compared the mutual relation of the classes
of pushdown transition systems, up to (divergence-preserving) branching bisimilarity,
according to the ES, FSES and FS interpretation. In this chapter we have the
analogous notions for PPDAs with termination on empty bag (EB), final state and
empty bag (FSEB), and termination on final state (FS).

EXAMPLE 5.2. Assume that A = {a,b, c } and D = {1 }. The state-transition diagram
in Figure 5.1 specifies a parallel pushdown automaton that can perform a-actions
while inserting a data element 1 in the bag for each a-action. When a data element 1

is available in the bag, the parallel pushdown automaton can, in both states, perform
a b-action while removing this data element. Only after the c-action is performed,
the interleaving of inserting and removing of the data element 1 stops and only the
choice to remove and execute the b-action remains. For clarity, the set of data is
confined to only one element.

s t

a[∗/¹1º]

c[∗/¹1º]

b[1/;] b[1/;]

FIGURE 5.1: An example of a parallel pushdown automaton.

Observe that this parallel pushdown automaton is nearly the same as the example
of a pushdown automaton in Figure 4.18 (on page 59) that is not pop choice-free.
The only minor difference is that the transitions s a[⊥/¹1º]−−−−−−→ s and s a[1/¹11º]−−−−−−→ s, of
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which the first uses the empty-test of the stack which is unavailable for the bag, are
replaced by the transition s a[∗/¹1º]−−−−−−→ s, an insert transition that does not inspect nor
take anything from the bag.

If we disregard these minor difference, we can see that if D consists of one data
element, more specifically if only one type of data element is inserted, then the class
of pushdown automata coincides with the class of parallel pushdown automata. This
is because a multiset over a set of one element is equal in use to a set or sequence.

Depending on the adopted acceptance condition, the parallel pushdown automa-
ton in Figure 5.1 accepts the language {wcw ′ | w ∈ {a,b}∗, w ′ ∈ {b}∗ ∧#a(w) + 1 ≥
#b(w) +#b(w

′) } (FS), or the language {wcw ′ | w ∈ {a,b}∗, w ′ ∈ {b}∗ ∧#a(w) + 1 =

#b(w) + #b(w
′) } (FSEB), and for EB we get the same language as for FSEB but it

additionally accepts the empty word. ♦

To formalise the intuitive behaviour of pushdown automata, we associate with
every PPDA M a transition system T(M). For the states of this associated transition
system we use configurations as defined as follows.

DEFINITION 5.3. A configuration of a parallel pushdown automaton M is a pair (s,µ)
consisting of a state s ∈ S, and bag contents (multiset) µ ∈M(D). △

The associated transition system semantics of PPDAs defines an Aτ-labelled tran-
sition relation on configurations such that a PPDA-transition s a[d/µ]−−−−→ t corresponds
with an a-labelled transition from a configuration consisting of the PPDA-state s and
bag contents ¹dº ⊎ ν, to a configuration consisting of the PPDA-state t and the bag
contents µ ⊎ ν, i.e. the original bag contents with the data element d replaced by the
multiset µ.

DEFINITION 5.4. Let M = (S,A,D,→,↑,↓) be a parallel pushdown automaton. The
transition system T(M) associated with M is defined as follows:

1. the set of states of T(M) is the set of configurations S ×M(D);

2. the transition relation of T(M) satisfies

a) (s,¹dº ⊎ ν) a−−→ (t,µ ⊎ ν) iff s a[d/µ]−−−−→ t for all s, t ∈ S, a ∈ Aτ, d ∈ D,
µ,ν ∈M(D), and

b) (s,ν) a−−→ (t,µ ⊎ ν) iff s a[∗/µ]−−−−→ t;

3. the initial state of T(M) is (↑,;); and

4. for the set of final states ↓ we consider three alternative termination conditions:

a) (s,ν)↓ in T(M) iff s↓ (the FS interpretation),

b) (s,ν)↓ in T(M) iff ν = ; (the EB interpretation), and

c) (s,ν)↓ in T(M) iff s↓ and ν = ; (the FSEB interpretation).

A transition system is a parallel pushdown transition system (according to the
FS/EB/FSEB interpretation) if it is associated with a PPDA (according to the same
interpretation). △

This definition now gives us the notions of parallel pushdown language and
parallel pushdown process.
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DEFINITION 5.5. A language accepted by a parallel pushdown transition system is
called a parallel pushdown language.

A parallel pushdown process (according to the FS/FSEB/EB interpretation) is a
divergence-preserving branching bisimilarity class of transition systems containing
a parallel pushdown transition system. △

EXAMPLE 5.6. Recall the example PPDA in Figure 5.1. The transition system
associated with this PPDA (according to the FSEB interpretation) is shown in
Figure 4.19 (on page 59). ♦

Due to the presence of the special symbol ∗ in PPDA transitions, the notion
of insert and remove transitions differs slightly from the notions of push and pop
transitions for a PDA.

DEFINITION 5.7. Let s, t ∈ S be states of some parallel pushdown automaton M. An
insert transition is a transition of the form s a[∗/¹dº]−−−−−−→ t (d, e ∈D); a remove transition
is a transition of the form s a[d/;]−−−−→ t (d ∈D). △

THEOREM 5.8. For every PPDA M there exists a PPDA M′ that uses only insert and
remove transitions such that T(M)↔∆

b
T(M′). �

PROOF. It is easy to see that limiting the set of transitions to insert and remove
transitions only in the definition of a parallel pushdown automaton yields the
same notion of a parallel pushdown transition system up to divergence-preserving
branching bisimilarity:

1. Eliminate a transition of the form s a[∗/;]−−−−→ t by adding a fresh state s′, replacing
the transition by two transitions s a[∗/¹dº]−−−−−−→ s′ τ[¹dº/;]−−−−−−→ t (with d some arbitrary
element in D, assuming that D 6= ;).

2. Eliminate a transition of the form s a[∗/µ]−−−−→ t, where µ = ¹d1º ⊎ · · · ⊎ ¹dnº
(n> 1) for some randomly picked order of data elements, by adding new states
s2, . . . , sn and replacing the transition s a[∗/µ]−−−−→ t by the sequence of transitions

s a[∗/¹d1º]−−−−−−→ s2
τ[∗/¹d2º]−−−−−−→ · · · τ[∗/¹dn−1º]−−−−−−−→ sn

τ[∗/¹dnº]−−−−−−→ t .

3. Eliminate a transition of the form s a[d/µ]−−−−→ t, where µ = ¹d1º ⊎ · · · ⊎ ¹dnº
(n≥ 1) for some randomly picked order of data elements, by adding new states
s1, . . . , sn and replacing the transition s a[d/µ]−−−−→ t by transitions s a[d/;]−−−−→ s1 and
the sequence of transitions

s1
τ[∗/¹d1º]−−−−−−→ s2

τ[∗/¹d2º]−−−−−−→ · · · τ[∗/¹dn−1º]−−−−−−−→ sn
τ[∗/¹dnº]−−−−−−→ t .

Observe that we only get a finite number of additional inert τ-transitions in the
associated transition system. �

Analogously with the stack of a PDA, the bag of a PPDA can also be defined by a
parallel pushdown automaton. Given the finite set of data D, the bag has an input
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channel i over which it can receive elements of D and an output channel o over which
it can send elements of D.

The bag is defined by a parallel pushdown automaton with one state ↑ (which is
both initial and final) and the transitions ↑ i?d[∗/¹dº]−−−−−−−→ ↑ and ↑ o!d[d/;]−−−−−→ ↑ for all d ∈D.
The associated transition system according to the (FS)EB interpretation of the bag
over D = {0,1 } is shown in Figure 5.2. Put in contrast with the pushdown transition
system with the stack (see Figure 4.3 on page 42), note the absence of the empty test
and that we have a grid rather than a tree.

i?0

o!0 i?1

o!1

i?0

o!0 i?1 o!0

o!1 i?0

i?1

o!1

FIGURE 5.2: Bag over D = {0, 1 }.

If we want to model the bag that always terminates, i.e. that terminates regardless
of its contents, we can use the PPDA specified above but then consider the associated
transition system according to the FS interpretation. This transition system will be
isomorphic with the transition system in Figure 5.2 but each state is final.

5.1.1 Termination Conditions

Recall the results of the differences between classes of pushdown transitions systems
according to the FS, FSES and ES interpretations shown in the previous chapter. (See
Figure 4.14 on page 49 for the overview.) We shall now investigate the relation
between the different classes of parallel pushdown transition systems according to
the FS, FSEB and EB interpretations.

FS and FSEB

In the case of the classes of FSEB and EB we can obtain similar results as we have for
FSES and ES.

THEOREM 5.9. For each parallel pushdown transition system according to the EB
interpretation there is, up to divergence-preserving bisimilarity, a parallel pushdown
transition system according to the FSEB interpretation. �

PROOF. Let T be the parallel pushdown transition system associated with some
PPDA M according to the EB interpretation. Let M′ be the PPDA obtained from M

by declaring all its states final. Then T is isomorphic with the transition system
associated with M′ according to the FSEB interpretation. �
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In the other direction we have a result similar as in Example 4.10 (on page 43):
transition systems associated with parallel pushdown automata that are not initially
terminating cannot be divergence-preserving branching bisimilar with any pushdown
transition system according to the EB interpretation.

EXAMPLE 5.10. There exists a pushdown transition system according to the FSEB
interpretation such that there is no pushdown transition system according to the EB
interpretation that is branching bisimilar with it.

Consider the parallel pushdown automaton M in Figure 5.3. Observe that the
initial state of this PPDA is not a final state.

s t

a[∗/1]

b[1/;]

b[1/;]

FIGURE 5.3: A parallel pushdown automaton that is not initially terminating.

The associated transition system T(M) according the FSEB interpretation (see
Figure 5.4 below) does not have a initial state which is also final.

(s,;) (s,¹1º) (s,¹1, 1º) (s,¹1, 1, 1º)

(t,;) (t,¹1º) (t,¹1, 1º)

a a a a

b b b

bbb

FIGURE 5.4: The transition system associated with the PPDA that is not

initially terminating according to the FSEB interpretation.

Because the bag of a PPDA is empty in the initial state by definition, every
transition system associated with a PPDA according to the EB interpretation has
an initial state which is also a final state. Therefore, there cannot exist a parallel
pushdown transition system according to the EB interpretation that is branching
bisimilar to the parallel pushdown transition system in Figure 5.4. ♦

For parallel pushdown automata that are initially terminating, we have the same
result as for pushdown automata in Example 4.11 (on page 44). The construction
described in the proof of that theorem uses a dummy symbol∅ to control the moment
the stack becomes empty. This way it is only allowed to go from a final state where the
stack would have been empty to a branching bisimilar, but not divergence-preserving
branching bisimilar, state where it really becomes empty. We use a similar technique
for parallel pushdown automata, with two differences: we do not have to take the
empty-test into account, and we cannot ensure that the bag is really empty because
we can reach and remove the dummy symbol at any time. This leads to a slightly
simpler construction.
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THEOREM 5.11. For each parallel pushdown transition system according to the FSEB
interpretation associated with a PPDA that is initially terminating, there is, up to
branching bisimilarity, a parallel pushdown transition system according to the EB
interpretation. �

PROOF. Let M = (S,A,D,→,↑,↓) be some parallel pushdown automaton that is
initially terminating. We shall modify M such that the transition system associated
with the modified parallel pushdown automaton according to the EB interpretation
is branching bisimilar to the transition system associated with M according to the
FSEB interpretation. We define the modified parallel pushdown automaton M′ =
(S′,A,D′,→′,↑′,;) as follows:

1. S
′ is obtained from S by adding a fresh initial state ↑′, and also a fresh state s↓

for every final state s ∈ ↓;
2. D

′ is obtained from D by adding a fresh dummy symbol ∅,

3. →′ is obtained from→ by

a) adding a transition (↑′,τ,∗,¹∅º,↑),
b) adding transitions (s,τ,∅,;, s↓) and (s↓,τ,∗,¹∅º, s) for every s ∈ ↓.

Note that the modification of M only introduces inert τ-transitions in the transition
system associated with M′. We leave it to the reader to verify that the relation

R = { ((↑,;), (↑′,;)) } ∪ { ((s,µ), (s,µ ⊎¹∅º)) | s ∈ S,µ ∈M(D) }∪
{ ((s,µ), (s↓,µ)) | s ∈ ↓,µ ∈M(D) }

is a branching bisimulation between the transition system associated with M accord-
ing to the FSEB interpretation and the transition system associated with M′ according
to the EB interpretation. �

This modification introduces divergence, as it is possible to infinitely often remove
and reinsert the dummy symbol. For PDAs we were able to modify the construction
using the empty-test to obtain a result that also preserved divergence, as shown
in Theorem 4.12 (on page 45). As we do not have the empty-test in PPDAs, we
conjecture that the analogous result for PPDAs does not hold.

CONJECTURE 5.12. There exists no parallel pushdown transition system according to
the EB interpretation that is divergence-preserving branching bisimilar with the parallel
pushdown transition system according to the FSEB interpretation associated with the
PPDA in Figure 5.3. �

FSEB and FS

For classes of parallel pushdown transition systems according to the FS and FSEB
interpretation we have a slightly different result than for the classes of pushdown
transitions systems according to the FS and FSES interpretation: FS and FSEB are
incomparable even up to branching bisimilarity.
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EXAMPLE 5.13. As an example consider the parallel pushdown automaton shown
in Figure 5.5. (This example is the parallel pushdown version of the pushdown
automaton in Figure 4.11 on page 48.)

b[1/;]

a[∗/1]

FIGURE 5.5: The counter parallel pushdown automaton.

Let us now assume that there exists a parallel pushdown automaton M that has
an associated transition system according the FS interpretation that is branching
bisimilar with the associated transition system according to the FSEB interpretation
shown in Figure 5.6 below. Let the b-norm of a configuration be the number of
b-transitions that can be performed, without performing intermediate a-transitions,
until termination can occur.

a a a

bbb

a

b

FIGURE 5.6: The transition system associated with the automaton of Fig-
ure 5.5 according to the FSEB interpretation.

Because the transition system associated with M is infinite, we can say, without
loss of generality, that there exists a state s of M that is infinitely often revisited when
performing a-transitions without intermediate b-transitions. Now, let us consider
this infinite sequence of configurations with state s. Dickson’s Lemma (see [Dic13])
implies that for every infinite sequences of vectors of natural numbers, we have that
there exist indices i and j such that ~x i ≤ ~x j in a point-wise fashion. Because we
can consider multisets as vectors of natural numbers, it follows that there are two
configurations (s,µ) and (s,ν) in T(M) such that µ ⊆ ν. (E.g. let ν be µ ⊎ κ.) Let
the b-norm of the configuration (s,µ) be n and let m be the number of a-transitions
necessary get from (s,µ) to (s,ν).

(s,;) (s,µ) (s,µ ⊎ κ)

(t,µ′) (t,µ′ ⊎κ)

an am

bn bn

FIGURE 5.7: Schematic overview of an attempted counter PPDA using the FS
interpretation.

However, the b-norm of the configuration (s,ν) is also n, because the automaton
can go to some terminating state t from state s using only bag contents µ. This
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should be m+ n if it was branching bisimilar with the associated transition system in
Figure 5.6. See Figure 5.7 for a schematic overview of what happens if we try to use
the FS interpretation to count.

Hence, there exists no PPDA that has an associated transition system according
to the FS interpretation that is branching bisimilar with the associated transition in
Figure 5.6. ♦

In the other direction we have a result similar as in Example 4.15 (on page 48).

EXAMPLE 5.14. Reconsider the counter PPDA depicted in Figure 5.5. The associated
transition system according to the FS interpretation is the same as for the pushdown
version (see Figure 4.12 on page 49). The reason that there is no parallel pushdown
transition system according to the FSEB interpretation follows the same argument
as in Example 4.15: a parallel pushdown transition system according to the FSEB
interpretation has finitely many terminating states, for the PPDA has only finitely
many states and the bag needs to be empty, while a parallel pushdown transition
system according to the FS interpretation can have infinitely many. ♦

The following mutual relations between the classes up to (divergence-preserving)
branching bisimilarity have been established. (See Figure 5.8 for a schematic
overview. Note that in the diagram FSEBit stands for the class of transition systems
according to the FSEB interpretation associated with initially-terminating PPDAs.
Also note that, because the PPDA in Example 5.13 is initially terminating, the example
also implicitly shows that EB 6⊆ FS and therefore the arrow is drawn from EB.)

FSEB

EB

FS
/↔∆

b
, /↔b

FSEB 6⊆ EB Example 5.10

EB ⊆ FSEB Theorem 5.9

FSEBit ⊆ EB Theorem 5.11 (up to↔b only)

(FS)EB 6⊆ FS Example 5.13

FS 6⊆ FSEB Example 5.14

FIGURE 5.8: Overview of the different classes of parallel pushdown transition

systems.

COROLLARY 5.15. The class of parallel pushdown transition systems according to the EB
interpretation is a proper subclass, up to divergence-preserving branching bisimilarity, of
the class of parallel pushdown transition systems according to the FSEB interpretation.

The class of parallel pushdown transition systems according to the FSEB interpreta-
tion is incomparable with, up to (divergence-preserving) branching bisimilarity, the class
of parallel pushdown transition systems according to the FS interpretation. �
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Not depicted in Figure 5.8 is the fact that for pushdown transitions that are
initially terminating, the class according to the FSEB interpretation is the same, up to
branching bisimilarity, as the class according to the EB interpretation.

Note that, had we equipped the bag memory with an empty-test, we would have
gotten the same picture as Figure 4.14 on page 49. A similar construction as in the
proof of Theorem 4.14 could then show that the class of parallel pushdown transition
systems according to the FSEB interpretation is, up to divergence-preserving branch-
ing bisimilarity, a proper subclass of the class according to the FS interpretation.
Also a similar construction as the proof of Theorem 4.12 could then show that the
class of parallel pushdown transition systems according to the FSEB interpretation
associated with initially-terminating PPDAs is, up to divergence-preserving branching
bisimilarity, equal to the class according to the EB interpretation.

5.2 Basic Parallel Specifications

In Section 4.2 we have seen the sequential process expressions and specifications,
which were expressions and finite recursive specifications over TSPτ. If we replace
the sequential composition in TSPτ by parallel composition we get the subtheory
BCPτ (Basic Communicating Processes) of TCPτ. We can look upon this specification
language as the process-theoretic counterpart of a commutative version of the
context-free grammars. We assume that the communication function γ is everywhere
undefined. This class of specifications is an extension of BPP (Basic Parallel
Processes), introduced by Bergstra and Klop in [BK85] and more thoroughly studied
by Christensen in [Chr93]. In [Srb01], Srba extended BPP with deadlock. Here, we
will extend it further with the constant 1.

DEFINITION 5.16. A basic parallel specification over some finite set of names N

is a finite recursive BCPτ-specification, i.e. a recursive specification over N in
which only the constructions 0, 1, N (N ∈ N), a._ (a ∈ Aτ), _ ‖ _ (with an
undefined communication function) and _+ _ are used to build basic parallel process
expressions. △

EXAMPLE 5.17. The process expression N defined in the basic parallel specification

N
def
= a.(N ‖ b.1) + c.1

specifies the parallel pushdown transition system according to the FSEB interpreta-
tion in Figure 4.19 (on page 59), which is associated with the parallel pushdown
automaton in Figure 5.1. ♦

Our basic parallel specifications can be brought into Greibach normal form.
We can define a normal form for basic parallel specifications if we instantiate
Definition 2.19 (on page 19) with the sequence of names interpreted as a parallel
composition of names.
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DEFINITION 5.18. A basic parallel specification E is in basic parallel normal form if
each defining equation of name N ∈ N is of the following form:

N
def
=
∑

i∈IN

ai.ξi (+ 1) .

In this form, every right-hand side of every defining equation consists of a number of
summands, indexed by a finite set IN (the empty sum is 0), each of which is either 1,
or of the form ai.ξi with ai ∈ Aτ and ξi a parallel composition of names; the empty
parallel composition is denoted by 1. △

All basic parallel specifications can be brought in basic parallel normal form. For if
we disregard the commutative nature of the parallel composition, we essentially have
a sequential specification, i.e. a context-free grammar, for which it is well-known that
they can be brought in sequential normal form.

PROPOSITION 5.19. For each basic parallel specification E and basic parallel process
expression p there exists a basic parallel specification in basic parallel normal form E′

such that TE′(p)↔∆
b
TE(p). �

We can associate transition systems with basic parallel specifications according to
the operational rules in Table 2.1 (on page 15). This gives us also the notion of basic
parallel process.

DEFINITION 5.20. A basic parallel process is a divergence-preserving branching bisim-
ilarity class of labelled transition systems containing a transition system associated
with a basic parallel specification and basic parallel process expression. △

Basic parallel processes were originally defined by Christensen in [Chr93] as the
class of processes over a signature including the terminated process, action prefixing,
choice and parallel composition. In this thesis we also allow intermediate termination
and deadlock.

5.2.1 Correspondence

Example 5.17 already suggests a correspondence between the transition systems
associated with basic parallel specifications and parallel pushdown transition systems.
We shall investigate the exact nature of this relation in the rest of this section.

Let us first consider a prominent PPDA or parallel pushdown transition system
that can be defined by a basic parallel specification. Recall the parallel pushdown
transition system according to the (FS)ES interpretation of a bag shown in Figure 5.2.

The following infinite recursive specification E∞B specifies, for the multiset µ, the

behaviour of the process Bµ modelling a bag with as contents the multiset of data
elements µ that receives input over channel i, i.e. when data is inserted, and sends
output over channel o, i.e. when data is removed. For the empty bag, we have:

B;
def
= 1+
∑

d∈D
i?d.B¹dº ,
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and for every non-empty multiset µ ∈M(D):

Bµ
def
=
∑

d∈µ
o!d.Bµ−¹dº +
∑

e∈D
i?e.Bµ⊎¹eº .

However, we would like our bag to have a finite version of this specification to
obtain a basic parallel specification.

DEFINITION 5.21. The following basic parallel specification defines a bag that can
terminate when it is empty:

Bi,o
def
= 1+
∑

d∈D
i?d.(Bi,o ‖ o!d.1) ,

which has the same associated transition system, up to isomorphism, as the one
shown in Figure 5.2; we refer to this specification of a bag over D as EB . △

It can be shown by RSP that the infinite and finite specification yield the same
bag process. For the proof we refer to [BW90, Theorem 3.5.3]. Note that the proof is
without 1-summands, but it can easily be extended.

LEMMA 5.22. We have that B;↔∆
b

Bi,o. �

Note that only the bag PPDA according to the FSEB interpretation is given by
the basic parallel specification above. If we consider the bag PPDA according to the
FS interpretation, we get the bag that can always terminate, i.e. it can terminate
regardless of its contents. The state of the bag when it contains data elements
d1, . . . , dn be characterised by a parallel composition, for example: Bi,o ‖ o!d1.1 ‖ . . . ‖
o!dn.1 An obvious modification to make EB always terminating would be to ensure
that each parallel component has a 1-summand so that termination is always possible.

To obtain a specification for the always terminating bag, all we have to do is add
1-summands to each defining equation of E∞B to obtain a recursive specification E∞

B t of

a transparent bag.

DEFINITION 5.23. The finite version of this specification, EB t can be defined as
follows:

B t
i,o

def
= 1+
∑

d∈D
i?d.
�
B t

i,o ‖ (o!d.1+ 1)
�

. △

The transition system associated with the specification of the transparent bag above
is, up to strong bisimilarity, equal to the transition system associated with the bag
PPDA according to the FS specification (see Figure 5.2 and consider it with all
states marked final). This is unlike the specification of the forgetful stack (see
Definition 4.25 on page 54), that had an associated transition system (see Figure 4.3
on page 42) that was up to branching bisimilarity not equal at all to the transition
system associated with the bag PDA according to the FS interpretation.
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Note that the specifications of the bag and transparent bag can be easily brought
in basic parallel normal form. We just have to replace, for all d ∈ D, the parallel
components, o!d.1 and o!d.1+ 1 respectively, by some name Ed with the component
itself as the process term of the defining equation.

Now, for the correspondence between parallel pushdown automata and basic
parallel specifications, let us first consider the direction from basic parallel specifi-
cations to parallel pushdown automata. We will do this in three steps and show
up to branching bisimilarity that: opaque specifications can be simulated by parallel
pushdown automata according to the FSEB interpretation, transparent specifications
by parallel pushdown according to the FS interpretation, and mixed specifications
according to the FSTB interpretation introduced below.

Recall that for a recursive specification over a finite set of names N a name is called
transparent if its defining equation has a 1-summand; it is called opaque otherwise.
Thus we can partition N into the transparent names N

+1 and the opaque names N
−1.

A recursive specification is transparent if all its names are transparent; it is opaque if
all its names are opaque.

Opaque specifications

We can give a construction in a similar way as for the simulation of transparency-
restricted specifications by pushdown automata shown in the proof of Theorem 4.35
(on page 61). Let us consider an example first.

EXAMPLE 5.24. Let E be the following basic parallel specification:

X
def
= a.(X ‖ Y) + b.Y + c.1 ,

Y
def
= d.1 .

This specification is in basic parallel normal form and opaque. Figure 5.9 depicts a
parallel pushdown automaton that simulates E up to divergence-preserving branching
bisimilarity if we take X as its initial name and use the FSEB interpretation.

↑ Ctl

a[X/¹X, Yº]
b[X/¹Yº]

c[X/;]
d[Y/;]

τ[∗/X]

FIGURE 5.9: A parallel pushdown automaton simulating basic parallel specifi-
cation E.

We have an initial state that puts the initial name in the bag when moving to
the state Ctl that handles the control based on the contents of the bag. For each
summand of a name in the specification we have a corresponding PPDA transition,
labelled with the action of the prefix, that removes the name and inserts all names
that are in parallel after the summand of the prefix. For example, for the summand
a.(X ‖ Y) of the defining equation of X, we add the transition Ctl a[X/¹X,Yº]−−−−−−−→ Ctl. ♦

The following theorem establishes a complete version of the construction.
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THEOREM 5.25. For each opaque basic parallel specification E, with initial name I, there
exists a parallel pushdown automaton M according to the FSEB interpretation such that
T(M)↔b TE(I). �

PROOF. Let E be a basic parallel specification over a finite set of names N, and let I

be an initial name of E. By Proposition 5.19 we can assume that E is in basic parallel
normal form and that all states in the associated transition system are denoted with
multisets of names. We define a parallel pushdown automaton M = (S,A,D,→,↑,↓)
as follows:

1. S consists of state ↑ and Ctl.

2. A consists of all the actions occurring in E.

3. D consists of the names occurring in E.

4. → is defined as follows:

a) for the initial name I ∈ N,→ has the transition ↑ τ[∗/¹Iº]−−−−−→ Ctl

b) for each summand a.ξ, where ξ ∈ M(N) is a parallel composition of
names, in the right-hand side of the defining equation for a name N, →
has the transition Ctl a[N/ξ]−−−−→ Ctl.

5. ↑ is the initial state,

6. ↓ consists of the state Ctl.

Note that the only the only τ-transition introduced in the transition system
associated with M is inert. We leave it to the reader to verify that the relation

R = { (I, (↑,;))} ∪ { (ξ, (Ctl,ξ)) | ξ ∈M(N) }

is a divergence branching bisimulation between the transition system associated with
the basic parallel specification E for the initial name I and the transition system
associated with M according to the FSEB interpretation. �

Transparent specifications

Now, if we have a transparent specification, each defining equation of a name has a
1-summand. This means that termination is possible in every state of the transition
system associated with a transparent specification. If we use a PPDA to simulate this
specification, in a similar way as we have shown above, a multiset of names is stored
in the bag. However, since all these names are transparent, we should be able to
terminate at any moment during the simulation. Hence, by just choosing termination
on final state instead of on both final state and empty bag we can obtain the desired
result. Note that it should also be possible to always reach a final state. This is the
case for our simulator PPDA, as one can always move to the state Ctl by means of an
inert silent step.

THEOREM 5.26. For each transparent basic parallel specification E, with initial name I,
there exists a parallel pushdown automaton M according to the FS interpretation such
that T(M)↔b TE(I). �
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PROOF. The proof follows the lines of the proof of Theorem 5.25. Only now R is
a branching bisimulation between the transition system associated with the basic
parallel specification E for the initial name I and the transition system associated
with M according to the FS interpretation. �

Mixed opaque/transparent specifications

We have just seen that for opaque specifications we require for the simulation that
the bag is empty before termination can occur. For the transparent specifications
we drop the empty bag requirement as we know that during simulation the bag
always contains transparent names, i.e. names that may be skipped. However, if
we have mixed opaque/transparent specifications, the bag may contain both opaque
and transparent names during simulation. So, we would like that the PPDA only
terminates if it is in a final state and the bag only contains transparent names.

We add the termination condition on final state and transparent bag to the
definition of transition systems associated with a PPDA.

DEFINITION 5.27. Let D
−1 ⊆ D be the data elements that are considered to be

opaque, and D
+1 =D \D−1 the data elements that are transparent.

If M is a parallel pushdown automaton and T(M) its associated transition system,
then (s,ν)↓ in T(M) iff s↓ and ν(d) = 0 for all d ∈D−1 (the FSTB interpretation). △

Note that if we define D
−1 to be empty (and thus D

+1 = D), we obtain
termination on final state; the stack can only contain transparent data elements and
the requirement ν(d) = 0 (d ∈D−1) is always met. If we define D

−1 to be equal to D,
we obtain termination on both final state and empty stack; the stack can only contain
opaque data elements and the requirement ν(d) = 0 (d ∈ D

−1) is only met if ν = ;.
However, if D−1 nor D+1 is empty, we conjecture the following.

CONJECTURE 5.28. There exists a pushdown transition system according to the FSTB
interpretation such that there is no pushdown transition system according to the FS nor
to the FSEB interpretation that is branching bisimilar with it. �

The class of pushdown transition systems according to the FSTB interpretation is
incomparable to the class according to the FS and FSEB interpretation, as a result.

To simulate a mixed opaque/transparent specification we can again reuse the
construction described in the proof of Theorem 5.25.

THEOREM 5.29. For each basic parallel specification E, with initial name I, there exists
a parallel pushdown automaton M according to the FSTB interpretation such that
T(M)↔b TE(I). �

PROOF. The proof follows the lines of the proof of Theorem 5.25. We not only define
that D =N, but also that D+1 = N

+1 and thus D−1 =N
−1.

Again, R is a branching bisimulation between the transition system associated
with the basic parallel specification E for the initial name I and the transition system
associated with M, but this time according to the FSTB interpretation. �
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Note that this result includes the previous two results for opaque and transparent
specifications. Indeed, we can take either D

+1 or D
−1 to be empty and use the

preceding correspondence result.
The results for all three classes of specifications hold to up to branching

bisimilarity. We think that it should be possible to obtain the result up to divergence-
preserving branching bisimilarity by storing additional information in the bag. We
leave this to future work.

Now, for the other direction, we have to determine how an arbitrary PPDA can be
defined by a basic parallel specification. However, Christensen has shown in [Chr93]
that this cannot be done for a simple PPDA such as the one shown in Example 5.10.
This is due to the fact that a PPDA with a single state cannot be found for the
language accepted by the PPDA in Figure 5.3, i.e. {anbn | n ≥ 1}. So, we proceed
with the restriction that a PPDA must have a single state and obtain a rather weak
correspondence between PPDAs and basic parallel specifications. Note, however, that
the constructed PPDA in Example 5.24 is almost single-state, were it not that we have
to put the initial variable in the bag.

EXAMPLE 5.30. Consider the counter parallel pushdown automaton in Figure 5.5
that has a single state.

Now, consider the following basic parallel specification that defines this PPDA:

N∗
def
= 1+ a.N∗ ‖N1 ,

N1

def
= b.1 ;

the initial name of this specification is N∗. The associated transition system has been
depicted in Figure 5.10.

N∗ N∗ ‖N1 N∗ ‖N1 ‖N1

a a

bb

a

b

FIGURE 5.10: The transition system associated with the basic parallel
specification defining the counter PPDA.

The associated transition system above is isomorphic with the associated tran-
sition system of the counter PPDA according to the FSEB interpretation (see also
Figure 5.6). If we want the same correspondence for the FS interpretation we have
to add an extra 1-summand to the defining equation of N1 . ♦

We can generalise this example to a more formal construction and obtain the
following result.

THEOREM 5.31. For every single-state parallel pushdown automaton M there exists a
basic parallel specification E, with initial name I, such that TE(I)↔∆

b
T(M). �
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PROOF. Let M = ({↑ },A,D,→,↑,↓) be a single-state parallel pushdown automaton.
We define a basic parallel specification E with a name N∗ with the following defining
equation:

N∗
def
= 1+
∑

(↑,a,∗,¹d1,...,dnº,↑)
a.N∗ ‖Nd1

‖ . . . ‖Ndn
,

and for every data element d ∈D a name Nd with the following equation:

Nd

def
=
∑

(↑ ,a,d ,¹d1,...,dnº,↑)
a.Nd1
‖ . . . ‖Ndn

,

Note that for transitions that insert nothing, the resulting (empty) parallel compo-
sition Nd1

‖ . . . ‖ Ndn
is denoted by 1. We choose N∗ as the initial name. In case we

interpret M according to the FS interpretation, we add a 1-summand to each defining
equation. We leave it to the reader to verify that the relation

R = { ((↑,¹d1, . . . , dnº),N∗ ‖Nd1
‖ . . . ‖Ndn

) | d1, . . . , dn ∈D }

is a divergence-preserving branching bisimulation and hence TE(N∗)↔∆
b
T(M). �

5.2.2 Decidability

In [CHM93] a tableau decision method is presented to show the decidability of
bisimulation equivalence on processes defined by BPP, a subtheory of BCPτ. In this
section, we extend this tableau decision method so that it can also deal with the empty
process and the deadlocked process. Similarly as for sequential specifications, we only
consider the decidability of strong bisimilarity in this part; we leave the extension
to branching bisimilarity (preferably divergence-preserving) to future work. We
will briefly discuss the methods, lemmas and theorems involved with using the
tableau decision method to decide bisimilarity and mainly focus on the parts where
adaptations are needed due to the presence of the constants 0 and 1.

The main difference is that the constant 0 in the paper of Christensen, Hirshfeld
and Moller is the identity element for both alternative and parallel composition, while
in our setting 0 is the identity element for the alternative composition and 1 is the
identity element for parallel composition. This subtle difference gives rise to some
adjustments of the decision method and related proofs:

– In our setting, 0 is not the identity element for parallel composition. For
example consider the process expression p = a.1. It is clear that p ‖ 0↔ a.0,
which is not bisimilar to p; the deadlocked process cannot be removed from a
parallel composition. We have to ensure that the proof system treats deadlock
as a non-removable term.

– Conversely, 1 is not an identity element for the alternative composition. To
determine if p + 1 is bisimilar to q, we have to check that q has a termination
option, and thus a 1-summand, too.
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– Finally, we have a form of synchronised termination in the case of parallel
composition. That is, a parallel composition can terminate if all of its
components can terminate.

Besides its role as the identity element for parallel composition, the empty
process 1 allows us to have transparent names in a recursive specification. In the
previous chapter we have seen that having transparent names can lead to unbounded
branching in the transition system that can be associated with this specification. A
requirement for the proof below is that the transition systems associated with the
basic parallel specifications have bounded branching. The example below illustrates
why this is the case; we refer to [BCT09, Corollary 4.5] for a formal argument.

EXAMPLE 5.32. Let us reconsider Example 4.27 (on page 55), but we replace
sequential composition by parallel composition:

X
def
= a.(X ‖ Y) + b.1 ,

Y
def
= c.1+ 1 .

(For convenience, we use in this chapter Xn to denote an n-fold parallel
composition of X, e.g. X3 = X‖X‖X.) Also in this case the process Y i can terminate and
can perform a c-transition which leads to Y i−1. However, it is not possible to “skip” a
name by executing a c-transition from Y i with 0≤ i and go to Y j with 0≤ j < i− 1.♦

Deciding strong bisimilarity

The tableau decision method is a goal-directed proof system. The method uses
inference rules of the form

rule name
p = q

p1 = q1 · · · pn = qn
C ,

where p and q are process expressions and C an optional side-condition. The premise
p = q is the goal to be achieved whereas the consequents p1 = q1, . . . ,pn = qn are the
subgoals to be established. A tableau is a maximal proof tree using a specified set of
rules. The rules we use here are shown in Table 5.1. These rules are the ones given
in [CHM93] supplemented with the rule SumT to handle the case that there are 1-
summands along with the summation. When building a tableau and applying the
rules, we refer to each premise and/or goal as a node. For an example of a tableau,
see Example 5.34 later on.

The rule Rec takes care of applying the recursive definition of the name while

at the same time unfolding a parallel composition. Let Yj

def
=
∑

i∈IYj

aj,i.ξ j,i (+ 1) for
1≤ j ≤ n. We define the function unf1, used in the rule Rec to represent the unfolding
of ξ = Y1 ‖ . . . ‖ Yn, as follows:

unf1(ξ) =

n∑

j=1

∑

i∈IYj

aj,i.
�
Y1 ‖ . . . ‖ Yj−1 ‖ ξ j,i ‖ Yj+1 ‖ . . . ‖ Yn

�
[+ 1]ξ∈(N+1)∗ .
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Rec
ξ = χ

unf1(ξ) = unf1(χ)

Sum

∑n
i=1 ai.ξi =
∑m

j=1 bj.χ j

{ai.ξi = bf(i).χ f (i) }ni=1
{bj.χ j = ag(j).ξg( j) }mj=1

(*)

(*) where f : {1, . . . , n} 7→ {1, . . . , m }
g : {1, . . . , m } 7→ {1, . . . , n}

SumT

∑n
i=1 ai.ξi + 1=
∑m

j=1 bj.χ j + 1

{ai.ξi = bf(i).χ f (i) }ni=1 {bj.χ j = ag(j).ξg( j) }mj=1

(**)

(**) where f : {1, . . . , n} 7→ {1, . . . , m }
g : {1, . . . , m } 7→ {1, . . . , n}

Prefix
a.ξ = a.χ

ξ = χ

SubL
ξ ‖η = ρ
χ ‖η = ρ

if χ ⊏ ξ and there is a dominated
node labelled ξ = χ or χ = ξ

SubR
ρ = ξ ‖η
ρ = χ ‖η

if χ ⊏ ξ and there is a dominated
node labelled ξ = χ or χ = ξ

TABLE 5.1: The extended tableau rules.

After applying the Rec rule, one can match summands using the Sum or SumT

rule and remove matching prefixes using the Prefix rule. Before applying the Rec

rule again, we need to perform a substitution using the SubL and SubR rules on the
current node if they can be applied. This is possible if there is a node upward in
the tree, called a dominated node, with ξ = χ or χ = ξ such that χ ⊏ ξ for some
well-founded ordering ⊏ that is defined in Definition 5.33 below.

We denote constructed tableaux by T(ξ = χ) where ξ = χ is the label of the root;
we denote paths by π and nodes by n, possibly with a subscript. If a node is labelled
ξ = χ we write n : ξ = χ.

Rules may only be applied to nodes that are not terminal. A node is terminal if
it is either a successful or unsuccessful terminal node. A successful terminal node is
one labelled either ξ = ξ where ξ may be 1 (we assume that the empty multiset

– 97 –



5.2. BASIC PARALLEL SPECIFICATIONS

denotes 1) or 0= 0. We have an unsuccessful terminal node if no rule can be applied.
The Prefix rule cannot be applied if there is a prefix mismatch, i.e. a.ξ = b.χ and
a 6= b. It can also be that the Sum rule cannot be applied, for example when a.ξ = 0
or 0= b.χ or that the SumT cannot be applied because one side has a 1-summand but
the other side does not. The rules SubL or SubR cannot be applied if the dominated
nodes needed for substitution are missing.

To check whether ξ↔ χ holds, we try to find a tableau with ξ = χ as the root
node. If the tableau only has successful terminal nodes, we call it a successful tableau
and we have shown that ξ and χ are bisimilar. They are not bisimilar if none of the
possible tableaux is successful.

We have to show that the application of rules in a tableau always eventually stops.
To show that each tableau is finite, and that there are finitely many tableaux we
require a well-founded ordering on the multisets of names. The ordering is used in
the side-conditions of the SubL and SubR rules.

In the definition of this ordering we assume that there is some fixed total order
on the names: N = {N1, . . . ,Nn }.

DEFINITION 5.33. We define a well-founded (lexicographical) ordering on all multi-
sets of parallel compositions of names N as follows:

N
k1

1 ‖ . . . ‖Nkn
n ⊏N

l1
1 ‖ . . . ‖Nln

n

iff there exists j such that k j < l j and for all i < j we have ki = li . △

EXAMPLE 5.34. Let us consider the following recursive specification:

N1

def
= a.(N2 ‖N3) + b.1+ 1 ,

N2

def
= a.(N2 ‖N4) + c.1 ,

N3

def
= 0 ,

N4

def
= a.N5 + b.1+ 1 ,

N5

def
= a.(N4 ‖N5) + c.N6 ,

N6

def
= 0 .

We fix the total ordering on the names as N6 < N5 < · · · < N1. If we now check
whether N1

↔N4 holds, we can construct the following successful tableau:

N1 = N4

a.(N2 ‖N3) + b.1+ 1= a.N5 + b.1+ 1

a.(N2 ‖N3) = a.N5

N2 ‖N3 = N5

a.(N2 ‖N4 ‖N3) + c.N3 = a.(N4 ‖N5) + c.N6

a.(N2 ‖N4 ‖N3) = a.(N4 ‖N5)

N2 ‖N4 ‖N3 = N4 ‖N5

N4 ‖N5 = N4 ‖N5

SubL

Prefix
c.N3 = c.N6

N3 = N6

0= 0
Rec

Prefix

Sum

Rec

Prefix
b.1= b.1

1= 1
Prefix

SumT

Rec
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In this tableau the SubL rule can be applied because using the well-founded ordering
on the parallel compositions we have that N5 ⊏N2 ‖N3. ♦

For this tableau decision method to work, we need to show that it is both sound
and complete. First, we need to know that tableaux are finite and that there are
hence only finitely many tableaux for each pair of process expressions. A proof for
the following lemma is already provided by Christensen, Hirshfeld and Moller (as
Lemma 3.2 in [CHM93]). We will not repeat the proof here as we did not adapt
anything that might affect its validity.

LEMMA 5.35. Every tableau for ξ = χ is finite. Furthermore, there is only a finite
number of tableaux for ξ = χ. �

The proof of the following completeness and soundness theorems are also mainly
due to Christensen, Hirshfeld and Moller [CHM93].

THEOREM 5.36 (Completeness). If ξ↔χ then there exists a successful tableau with
root labelled ξ = χ. �

PROOF. It is easy to see that the added rule SumT is forward sound, i.e. if the premise
as well as all nodes above relate bisimilar processes then it is possible to find a set
of goals relating bisimilar processes. Because the property holds for the added rule
and the unfolding function unf1 preserves bisimilarity, the proof for this theorem is
the same as the proof in [CHM93, Theorem 3.3]. �

The soundness proof relies on an alternative characterisation of bisimulation
taken from [CHM93] and extended with termination conditions.

DEFINITION 5.37. The sequence of bisimulation approximations
�↔

n

	∞
n=0 is defined

as follows:

– p↔0 q for all process expression p and q;

– p↔n+1 q iff for all a ∈Aτ,
• if p a−−→ p′ then there exists q′ such that q a−−→ q′ and p′↔n q′,

• if q a−−→ q′ then there exists p′ such that p a−−→ p′ and p′↔n q′,

• if p↓ then q↓ and vice versa. △

Using bisimulation approximation sequences we can prove soundness of the
tableau method.

THEOREM 5.38 (Soundness). If there is a successful tableau labelled with root labelled
ξ = χ then ξ↔χ. �

PROOF. Suppose T(ξ = χ) is a tableau for ξ = χ, and that ξ 6↔χ. We shall construct
a maximal path π = {ni : p = q } through this tableau starting at the root ξ = χ in
which pi 6= qi for each i. Hence the terminal node of this path cannot be successful,
so T(ξ = χ) is not successful.
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While constructing π, we shall at the same time construct the sequence of natural
numbers {mi : pi 6↔mi

qi | pi
↔

j qi for all j < mi }. We shall also prove along the way
that this sequence is non-increasing, and strictly decreasing through applications of
the rule Prefix. Given ni : pi = qi and mi , we get ni+1 : pi+1 = qi+1 and mi+1 according
to the following cases:

– If Rec is applied to ni, then the consequent is ni+1 and mi+1 = mi .

– If Sum is applied to ni, then there must be some consequent ni+1 : pi+1 = qi+1

with pi+1 6↔mi
qi+1 and pi+1

↔
j qi+1 for all j < mi , so mi+1 = mi .

– If SumT is applied to ni, then there must be some consequent ni+1 : pi+1 = qi+1

with pi+1 6↔mi
qi+1 and pi+1

↔
j qi+1 for all j < mi , so mi+1 = mi .

– If Prefix is applied to ni, then the consequent is ni+1 and mi+1 = mi − 1.

– If SubL is applied to ni, then pi = qi must be of the form ξ ‖ η = ρ with
dominated node ξ = χ (χ ⊏ ξ). Since between nj and ni there must have
been an intervening application of the rule Prefix, we must have that mi < m j .
We take the node ni+1 : χ‖η = ρ, and show that we have some valid mi+1 ≤ mi ,
that is, that χ ‖η 6↔ρ. But this follows from ξ↔mi

χ and ξ ‖η 6↔mi
ρ.

– The arguments for the application of the SubR are identical.

That the above conditions hold of the resulting path is now clear. �

With the modified tableau decision method for which we have shown that it still
generates finitely many finite tableaux and the rules are still sound and complete, we
have the desired result.

COROLLARY 5.39. Bisimilarity is decidable on basic parallel specifications. �

5.3 Explicit Interaction

In the previous chapter we have made the interaction within the pushdown automa-
ton explicit: a linear specification of the finite control of the pushdown automaton
was put in parallel with a sequential specification of the stack. We have seen that
this yielded an associated transition system that is divergence-preserving branching
bisimilar with the original pushdown transition system. The result was obtained in
two steps: first for pushdown automata with termination on both final state and
empty stack, and then with termination on final state only. For the latter case we
introduced an alternative definition of the stack, as there is no sequential specification
of an always terminating stack.

In this section we will do the same for the parallel pushdown automaton and
see that the result becomes more clear-cut. However, we obtain results only up to
branching bisimilarity due to the fact that removing data elements from a bag is not
deterministic. For the parallel pushdown automata with termination on final state
and termination on both final state and empty bag, we are able to use the same
finite control, and just use a different specification of the bag. These specifications
are the basic parallel specifications of the bag and the transparent bag that we have
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seen before in Section 5.2.1. Since we are also interested in the relation between
basic parallel specifications and the explicit interaction, we also investigate pushdown
automata with termination on both final state and transparent bag. For this we shall
present the partially transparent bag process, which is a concept in between the bag
and the transparent bag.

First, we consider parallel pushdown automata according to the FSEB inter-
pretation. Let M = (S,A,D,→,↑,↓) be some parallel pushdown automaton. By
Theorem 5.8 we can assume that M only has insert and remove transitions. We
can now define the linear specification Efc, capturing the finite control of M. For every
state s ∈ S we add to Efc a name Cs with the following defining equation (s, t ∈ S,
a ∈ Aτ, d ∈D):

Cs

def
=
∑

(s,a,∗,d,t)∈→
a.i!d.Ct +
∑

d∈D
o?d.Cs,d [+ 1]s↓ ,

and for every state s ∈ S and data element d ∈ D we add to Efc a name Cs,d with the
following defining equation (s, t ∈ S, a ∈Aτ, d ∈D):

Cs,d
def
= i!d.Cs +
∑

(s,a,d,;,t)∈→
a.Ct .

The names Cs (s ∈ S) handle the insert transitions for state s and the detection
whether some data element d can be found in the bag. The names Cs,d (s ∈ S, d ∈D)
handle the remove transitions for state s given that we know that data element d has
been found in the bag. Note that these names also have a summand i!d.Cs to put the
data element back in the bag to prevent that the removal of d becomes an irreversible
choice. We will see later that this is necessary to prevent the creation of non-inert
silent transition once abstraction has been applied over the communication between
finite control and bag.

EXAMPLE 5.40. Let us reconsider the parallel pushdown automaton in Figure 5.1
(on page 80). When applying the construction described above we get the following
linear specification for the finite control:

Cs

def

= a.i!1.Cs + c.i!1.Ct + o?1.Cs,1 ,

Cs,1
def
= i!1.Cs + b.Cs ,

Ct

def
= o?1.Ct,1 + 1 ,

Ct,1
def
= i!1.Ct + b.Ct . ♦

Now, if we put the finite control in parallel with the bag, we can obtain the
following result for pushdown automaton with termination on both final state and
empty bag.

THEOREM 5.41. For every parallel pushdown automaton M according to the FSEB
interpretation there exists a linear specification Efc and linear process expression p, such
that T(M)↔b TEfc∪EB

(
�

p ‖ B
�

i,o). �
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PROOF. The specification Efc is constructed for M as described above. We present
some observations from which it is fairly straightforward to establish that T(M)↔b

TEfc∪EB
(
�

p ‖ B
�

i,o). In our proof we abbreviate the process expression B ‖ i!d1.1 ‖ · · · ‖
i!dn.1 by B¹d1,...,dnº, with, in particular, B; = B. (Recall the infinite specification of the
bag given on page 90.)

First, note that the control process for some state s is not allowed to choose which
data element to pick until the corresponding action is performed. Therefore, given
that the multiset µ is not empty, we have for each d ∈ µ that

∂i,o(Cs ‖ Bµ)
o?!d−−→ ∂i,o(Cs,d ‖ Bµ−¹dº)

i?!d−−→ ∂i,o(Cs ‖ Bµ)

When the abstraction τi,o(_) is applied, we get two inert τ-transitions and obtain the
following (intermediate) result:

�
Cs ‖ Bµ
�

i,o
↔

b

∑

d∈µ

�
Cs,d ‖ Bµ−¹dº
�

i,o
.

Hence, when a data element is removed from the bag, the control process has not
made a choice yet as it can always reinsert it. This is different from the interaction
between the control process and the stack in the proof of Theorem 4.42 (on page 69),
since a pop from the stack is deterministic, i.e. one always receives the top element.

Second, whenever T(M) has an insert transition (s,µ) a−−→ (t,µ ⊎¹dº), then

∂i,o(Cs ‖ Bµ)
a−−→ i?!d−−→∂i,o(Ct ‖ Bµ⊎¹dº) ,

and the τ-transition resulting from applying τi,o(_) is inert.
Finally, whenever T(M) has remove transition (s,µ ⊎¹dº) a−−→ (t,µ), we first use

the fact that
�

Cs ‖ Bµ⊎¹dº
�

i,o
↔

b

�
Cs,d ‖ Bµ
�

i,o
, non-deterministically removing data

element d, and then finish with

∂i,o(Cs,d ‖ Bµ)
a−−→ ∂i,o(Ct ‖ Bµ) . �

Now, for the other direction. We can show that if we have a process defined
by a linear specification that communicates with the bag, we can find a PPDA that
simulates the behaviour of the two specifications put in parallel.

THEOREM 5.42. For every linear specification E and linear process expression p there
exists a parallel pushdown automaton M according to the FSEB interpretation such that
TE∪EB

(
�

p ‖ B
�

i,o)↔b T(M). �

PROOF. Let E be a linear specification and let p be a linear process expression. We
define a parallel pushdown automaton M as follows:

– The set of states, the action alphabet, and the initial and final states are the
same as those of the transition system TE(p) (which is a finite automaton).

– The set of data symbols is the set of data D of the presupposed recursive
specification of the bag.
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– Whenever s a−−→ t in TE(p), and a 6= i!d, o?d (d ∈D), then s a[∗/;]−−−−→ t;

– whenever s i!d−−→ t for some d ∈D in TE(p), then s τ[∗/¹dº]−−−−−−→ t;

– whenever s o?d−−→ t for some d ∈D in TE(p), then s τ[d/;]−−−−→ t.

We omit the proof that every transition of TE∪EB
(
�

p ‖ B
�

i,o) can be matched by a

transition in T(M) in the sense required by the definition of divergence-preserving
branching bisimilarity. �

To obtain the same results for parallel pushdown automata according to the
FS interpretation, we only have to replace the bag by the transparent bag (see
Definition 5.23). If we apply the same constructions explained above, termination
will occur when the final control is in a final state, because the transparent bag can
always terminate. We get the following results, but shall omit the proofs.

THEOREM 5.43. For every parallel pushdown automaton M according to the FS
interpretation there exists a linear specification Efc and linear process expression p, such

that T(M)↔b TEfc∪EB t (
�

p ‖ B t
�

i,o
), and vice versa. �

To also have the same results for parallel pushdown automata according to the
FSTB interpretation, we have to replace the bag again.

DEFINITION 5.44. Let D
−1 ⊆ D be the data elements that are considered to be

opaque, and D
+1 =D \D−1 the data elements that are transparent.

We define the partially transparent bag, a mix of the specification of the bag and
the transparent bag, by the following basic parallel specification:

B
pt

i,o

def
= 1+
∑

d∈D−1

i?d.(B
pt

i,o ‖ o!d.1) +
∑

d∈D+1

i?d.
�
B

pt

i,o ‖ (o!d.1+ 1)
�

.

We refer to this specification as EB pt. △

Now, if we apply the same constructions explained above, termination will occur
when the final control is in a final state and the partially transparent bag contains no
opaque data elements.

THEOREM 5.45. For every parallel pushdown automaton M according to the FSTB
interpretation there exists a linear specification Efc and linear process expression p, such

that T(M)↔b TEfc∪EB pt
(
�

p ‖ Bpt
�

i,o
), and vice versa. �

We have seen in Section 5.2.1 that basic parallel specifications can be simulated
by a PPDA (according to the FSTB interpretation). We have also seen in the theorem
above that each PPDA according to the FSTB interpretation can be defined by a linear
specification for the finite control of the PPDA and a basic parallel specification of the
partially transparent bag memory, combined in a single specification that allows for
communication between both components. Indirectly, we have established that each
basic parallel specification can be written as a linear specification communicating
with a partially transparent bag. Therefore, we can consider the partially transparent
bag, with its basic parallel specification, as the canonical basic parallel process.
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COROLLARY 5.46. For every basic parallel specification E and basic parallel expression p

there exists a linear specification Efc and linear process expression q such that

TE(p)↔b TEfc∪EB pt (
�

q ‖ Bpt
�

i,o
) . �

PROOF. The result follows from Theorems 5.29 and 5.45. �

Note that the same result was obtained directly for basic parallel specifications
in [BCT09].

5.4 Conclusions

In this chapter we have followed the lead of the previous chapter and investigated
a parallel, commutative version of pushdown automata and context-free languages.
We have seen the definition of the parallel pushdown automaton, which is basically
a pushdown automaton equipped with a bag memory instead of a stack memory.
The replacement of the type of memory leads to subtle differences in semantics with
respect to the regular pushdown automata, such as the removal of a data element
from the memory not being deterministic and not being able to test whether the
memory is empty.

We have investigated the differences in classes of parallel pushdown transition
systems if we use different termination conditions: termination on empty bag (EB),
on final state (FS), and on both final state and empty bag (FSEB). We have shown that
the class according to the EB interpretation is, up to divergence-preserving branching
bisimilarity, a proper subclass of the class according to the FSEB interpretation. If
we drop divergence-preservation and consider parallel pushdown automata that are
initially terminating, then the class of parallel pushdown transition systems according
to the EB interpretation coincides with the class according to the FSEB interpretation.
The class according to the FSEB interpretation turns out to be incomparable, up to
branching bisimilarity, with the class according to the FS interpretation. Unlike for
pushdown transition systems, this is also the case without divergence-preservation.
Therefore, we have considered the correspondence results both the FSEB and FS
class.

We proposed basic parallel specifications as the specification language for the
class of parallel pushdown systems. A basic parallel specification is a finite recursive
BCPτ-specification (assuming an empty communication function). This specification
language extends a traditional language for similar kinds of systems, called BPP,
with 0, 1 and prefixing. It also is the parallel counterpart of the sequential
specifications of the previous chapter where sequential composition is replaced by
parallel composition. We have seen that we can find parallel pushdown automata
that simulate, up to branching bisimilarity, opaque and transparent basic parallel
specifications, respectively by using the FSEB and FS interpretations. To be able
to simulate mixed opaque/transparent basic parallel specifications we added the
termination condition on both final state and transparent bag (FSTB). This means
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that the bag can terminate if it only contains data elements from a designated
“transparent” subset of data elements. In the other direction we have seen that
only single-state PPDAs can be defined by a basic parallel specification. Hence, the
correspondence between PPDAs and basic parallel specifications is rather weak.

As basic parallel specifications play an important role in this chapter, we have
shown that it is possible to decide if two basic parallel specifications have the same
associated transition system up to (strong) bisimilarity, extending earlier work for
BPP-specifications.

From a process-theoretic perspective it makes sense to make the interaction
with the bag in a PPDA explicit. We can do this by giving a linear specification
representing the finite control of the PPDA and put it in parallel with a specification
of a bag, allowing communication over an input and output channel for inserting
and removing data elements. We have established this correspondence for parallel
pushdown automata according to the FSEB, FS and FSTB interpretations by using the
same linear specification of the finite control and respectively the bag, the transparent
bag and the partially transparent bag.

Figure 5.11 presents a schematic overview of the correspondence results for
all three interpretations from a process-theoretic point of view. Note that there
is an indirect correspondence between basic parallel specifications and the explicit
interaction. Because the (partially transparent) bag can be defined by a basic parallel
specification, and all basic parallel specifications can be given as a finite-state process
communicating with this bag, the (partially transparent) bag can be considered as
the canonical basic parallel process.

PPDAs

single-state

basic parallel
specifications

opaque/trans./mixed

Explicit
interaction�

p ‖ B
�

i,o/�
p ‖ B t
�

i,o
/�

p ‖ Bpt
�

i,o

parallel pushdown
transition systems
FSEB/FS/FSTB

Thm. 5.25/Thm. 5.26/Thm. 5.29

Theorem 5.31

Thm. 5.41,
Thm. 5.43/
Thm. 5.45

Thm. 5.42/

FIGURE 5.11: Correspondence results for the FSEB/FS/FSTB interpretations.
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5.4.1 Future Work

The decidability result discussed in Section 5.2.2 should be extended to branching
bisimilarity (preferably divergence-preserving). However, this has been an open
problem for a long time.

We have seen that only single-state PPDAs can be defined by a basic parallel
specification. A more suitable candidate could be Petri nets instead of basic parallel
specifications, as was shown by Moller in [Mol96]. However, Hirshfeld and Moller
have shown later in [HM01] that there are Petri nets that cannot be simulated by
a PPDA. Thus, it is necessary to find a appropriate restriction on Petri nets for the
correspondence with PPDAs.

Recall that we use a technique to avoid making a choice when removing
something from the bag in the definition of the linear specifications of the finite
control of a PPDA. Namely, when some data element is picked from the bag, it can
always be put back in the bag. While this makes the initial τ-transition to remove
the data element inert up to branching bisimilarity, it does introduce divergence. The
question remains whether this can be done without introducing divergence and thus
lifting the correspondence results to divergence-preserving branching bisimilarity.

Another question is whether the introduction of the FSTB interpretation is really
necessary. In the previous chapter we remarked that it might be possible to simulate
mixed opaque/transparent sequential specifications by a PDA with termination on
both final state and empty stack. This would be, however, at the cost of switching
to the weaker contrasimulation equivalence. It would be worth investigating if such
an approach would work here as well as an alternative solution to using the FSTB
interpretation.

Finally, in the conclusions of the previous chapter we have suggested to define and
investigate deterministic pushdown automata (see page 75). Similarly, it would be
interesting to define deterministic parallel pushdown automata and investigate the
expressivity of this class using parallel pushdown transition systems.
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Chapter 6

Computable & Executable Systems

The Turing machine [Tur37] is widely accepted as a computational model suitable for
exploring the theoretical boundaries of computing. It is used in computability theory
to formally characterise the notion of effectively calculable function. An effectively
calculable function is a function for which there exists an algorithm that can calculate
its values. It was later shown that the Turing machine characterises the same notion
of effectively calculable function as the separately proposed notions of recursive
functions by Kleene in [Kle36] and λ-calculus by Church in [Chu36].

Motivated by the existence of universal Turing machines, many textbooks on the
theory of computation (e.g., [Sud88, Sip97, HMU06]) present the Turing machine
not just as a theoretical model to explain which functions are computable, but, in
fact, as an accurate conceptual model of the computer. For instance, Sipser writes
in [Sip97] that “[a] Turing machine can do everything a real computer can do.” This
statement is sometimes referred to as the strong Church-Turing thesis, as opposed
to the normal Church-Turing thesis according to which every effectively calculable
function is computable by a Turing machine.

There is, however, a limitation to viewing the Turing machine as a conceptual
model of a computer. A Turing machine operates from the assumptions that: (1)
all the input it needs for the computation is available on the tape from the very
beginning; (2) it performs a terminating computation; and (3) it leaves the output
on the tape at the very end. That is, a Turing machine computes a function, and thus
it abstracts from two key ingredients of computing: interaction and non-termination.
Nowadays, most computing systems are so-called reactive systems [HP89], systems
that are generally not meant to terminate and that consist of a number of computing
devices that interact with each other and with their environment. A reactive system
often unremittingly depends on input, and unremittingly produces output.

Towards the end of the 1970s, Milner observed that, for a thorough investigation
of interaction and concurrency, it is profitable to study these notions in isolation
rather than to try and add them to any of the existing models of computation. One
of his desiderata for the design of CCS was “that there be only a single combinator
for combining processes which interact or which coexist” [Mil93]. In particular, also
the interaction of a computing device with its memory should be modelled using
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a symmetric notion of interaction, considering the memory as a separate process.
Concurrency theory has provided us with a fundamental understanding of interaction
and non-termination.

In Section 6.1 we propose a notion of reactive Turing machine (RTM), extending
the classical notion of Turing machines with interaction in the style of concurrency
theory. The extension consists of a facility to declare every transition to be either
observable, by labelling it with an action symbol, or unobservable, by labelling it
with τ. Typically, a transition labelled with an action symbol models an interaction of
the RTM with its environment (or some other RTM), while a transition labelled with τ
refers to an internal computation step. Thus, a conventional Turing machine can be
regarded as a special kind of RTM in which all transitions are declared unobservable
by labelling them with τ.

The semantic object associated with a conventional Turing machine is either the
function that it computes, or the formal language that it accepts. The semantic
object associated with an RTM is a behaviour, formally represented by a transition
system, as we have also done in the previous chapters. A function is said to be
effectively computable if it can be computed by a Turing machine. By analogy, we
say that a behaviour is effectively executable if it can be exhibited by a reactive Turing
machine. In concurrency theory, behaviours are usually considered modulo a suitable
behavioural equivalence. Also in this chapter we shall mainly use (divergence-
preserving) branching bisimilarity.

In Section 6.2 we set out to investigate the expressiveness of RTMs up to
divergence-preserving branching bisimilarity. We shall present an example of a
behaviour that is not effectively executable up to branching bisimilarity. Then, we
establish that every computable transition system with a bounded branching degree
can be simulated, up to divergence-preserving branching bisimilarity, by an RTM. If
the divergence-preservation requirement is dropped, even every effective transition
system can be simulated. These results will then allow us to conclude that the
behaviour of a parallel composition of RTMs can be simulated on a single RTM.

In Section 6.2.4 we define a suitable notion of universality for RTMs and
investigate the existence of universal RTMs. We shall find that, since bisimilarity is
sensitive to branching, there are some subtleties pertaining to the branching degree
bound associated with each RTM. Up to divergence-preserving branching bisimilarity,
an RTM can at best simulate other RTMs with the same or a lower bound on their
branching degree. If divergence-preservation is not required, however, then universal
RTMs do exist.

In Section 6.3, we consider the correspondence between RTMs and the process
theory TCPτ. We establish that every executable transition system is, again up to
divergence-preserving branching bisimilarity, definable by a finite recursive TCPτ-
specification. As we have seen in previous chapters, recursive specifications are the
process-theoretic counterparts of grammars in the theory of formal languages. Thus,
the result in Section 6.3 may be considered as the process-theoretic version of the
correspondence between Turing machines and unrestricted grammars. Furthermore,
the finite recursive TCPτ-specification actually consists of a specification of the finite
control of the RTM that interacts with a specification modelling a tape. Thus, as an
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interesting corollary, we obtain a specification that makes the conceptual interaction
within a reactive Turing machine between its finite control and its tape memory
explicit; similar results have also been obtained for pushdown automata and parallel
pushdown automata in the previous chapters.

Several extensions of Turing machines with some form of interaction have been
proposed in the literature, already by Turing in [Tur39], and more recently, when
there was renewed interest in the matter, in [LW00, GSAS04, GSW06, BGRR07,
WL08]. The goal in these works is mainly to investigate to what extent interaction
may have a beneficial effect on the power of sequential computation. Interaction is,
e.g., added by allowing an algorithm to query its environment, or by assuming that
the environment periodically writes a write-only input tape and reads a read-only
output tape of a Turing machine. Thereby, the focus remains on the computational
aspect, and interaction is not treated as a first-class citizen. Our goal, instead, is to
achieve integration of automata and concurrency theory that treats computation and
interactivity on equal footing.

The material in this chapter is based on the following publication:

[BLT11b] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. “Reactive Turing
Machines”. In: Proceedings of FCT 2011. Ed. by O. Owe, M. Steffen, and
J. Telle. LNCS 6914. Springer, 2011, pp. 348–359.

This is an abstract of the following full version technical report:

[BLT11c] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. Reactive Turing Ma-
chines. Tech. rep. arXiv:1104.1738v3. Cornell University Library, 2011.

6.1 Reactive Turing Machines

For an RTM we add to the finite set of data symbols D a special symbol � to denote
a blank tape cell, assuming that � 6∈ D; we denote the set D ∪ {� } of tape symbols
by D�. In our definition, following the original definition of the Turing machine, we
allow head movements to the left (L) and right (R); we use M to range over { L,R }.

DEFINITION 6.1. A reactive Turing machine (RTM) M is a six-tuple (S,A,D,→,↑,↓)
where

1. S is a finite set of states;

2. A a finite set of actions;

3. D a finite set of data;

4. → ⊆ S×D�×Aτ×D�×{ L,R }×S is a (D�×Aτ×D�×{ L,R })-labelled relation
on S,

5. ↑ ∈ S is the initial state, and

6. ↓ ⊆ S is the set of final states.

An RTM is deterministic if (s, d,a, e1, M1, t1) ∈→ and (s, d,a, e2, M2, t2) ∈→ implies
that e1 = e2, t1 = t2 and M1 = M2 for all s, t1, t2 ∈ S, d, e1, e2 ∈ D�, a ∈ Aτ, M1, M2 ∈
{ L,R }, and, moreover, (s, d,τ, e1, M1, t1) ∈ → implies that there do not exist a 6= τ,
e2, M2, t2 such that (s, d,a, e2, M2, t2) ∈→. △
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If (s, d,a, e, M, t) ∈ →, we write s a[d/e]M−−−−−→ t. The intuitive meaning of such a
transition is that whenever M is in state s and d is the symbol currently read by the
tape head, then it may execute the action a, write symbol e on the tape (replacing d),
move the read/write head one position to the left or one position to the right on
the tape (depending on whether M = L or M = R), and then end up in state t.
RTMs extend conventional Turing machines by associating with every transition an
element a ∈ Aτ. The symbols in A are thought of as denoting observable activities;
a transition labelled with an action symbol in A will semantically be treated as
observable. Observable transitions are used to model interactions of an RTM with
its environment or some other RTM, as will be explained more in detail below when
we introduce a notion of parallel composition for RTMs. The symbol τ is used to
declare that a transition is unobservable. A conventional Turing machine is an RTM
in which all transitions are declared unobservable.

EXAMPLE 6.2. Assume that A = { c!d, c?d | c ∈ {i, o}, d ∈D� }. Intuitively, i and o are
the input/output communication channels through which the RTM can interact with
its environment. The action symbol c!d (c ∈ { i, o }) then denotes the event that a data
element d is sent by the RTM along channel c, and the action symbol c?d (c ∈ { i, o })
denotes the event that a data element d is received by the RTM along channel c.

τ[#/�]L

τ[1/�]L

τ[#/�]L

o!1[1/�]L

o!#[�/�]R

τ[�/�]R

i?1[�/1]R

i?#[�/#]L

τ[1/1]L

τ[�/�]R

τ[1/1]R

τ[1/1]R

FIGURE 6.1: An example of a reactive Turing machine.

The state-transition diagram in Figure 6.1 concisely specifies an RTM that first
inputs a string, consisting of an arbitrary number of 1s followed by the symbol #,
stores the string on the tape, and returns to the beginning of the string. Then, it
performs a computation to determine if the number of 1s is odd or even. In the first
case, it simply removes the string from the tape and returns to the initial state. In the
second case, it outputs the entire string, removes it from the tape, and returns to the
initial state. ♦

The semantics of a conventional Turing machine is either the function on natural
numbers that it computes, or the formal language that it accepts. The function
or the formal language associated with a Turing machine is determined by its
set of computations, i.e., sequences of configurations leading from some initial
configuration to a final configuration. A computation is, by definition, terminating
and abstracts from the moments of choice. For RTMs to serve as models of reactive
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systems, it is important not to discard their infinite behaviours. Furthermore, we are
going to model interaction by allowing the environment or other RTMs to influence
choices during the operations of an RTM.

With every RTM M we are going to associate a transition system T(M). The states
of T(M) are the configurations of the RTM, consisting of a state of the RTM, its tape
contents, and the position of the read/write head on the tape. We represent the tape
contents by an element of D∗

�
, replacing precisely one occurrence of a tape symbol d

by a marked symbol ď, indicating that the read/write head is on this symbol. We
denote by Ď� = { ď | d ∈D� } the set of marked tape symbols; a tape instance is a

string δ ∈ (D� ∪ Ď�)
∗

such that δ contains exactly one element of Ď�. Note that we
do not use δ exclusively for tape instances; we also use δ for sequences over D. A
tape instance thus is a finite sequence of symbols that represents the contents of a
two-way infinite tape. Henceforth, we shall not distinguish between tape instances
that are equal modulo the addition or removal of extra occurrences of the symbol �
at the left or right extremes of the string. That is, we shall not distinguish tape
instances δ1 and δ2 if �ωδ1�

ω = �ωδ2�
ω. Note that a marked blank symbol �̌ is

considered as a non-blank symbol with respect to adding or removing blanks, e.g.
δ��̌�= δ��̌.

DEFINITION 6.3. A configuration of an RTM M = (S,A,D,→,↑,↓) is a pair (s,δ)
consisting of a state s ∈ S, and a tape instance δ. △

Our transition system semantics defines an Aτ-labelled transition relation on
configurations such that an RTM-transition s a[d/e]M−−−−−→ t corresponds with a-labelled
transitions from configurations consisting of the RTM-state s and a tape instance
in which some occurrence of d is marked. The transitions lead to configurations
consisting of t and a tape instance in which the marked symbol d is replaced by e,
and either the symbol to the left or to right of this occurrence of e is replaced by its
marked version, according to whether M = L or M = R. If e happens to be the first
symbol and M = L, or the last symbol and M = R, then an additional blank symbol
is appended at the left or right end of the tape instance, respectively, to model the
movement of the head.

It is convenient to introduce some notation to be able to concisely denote the
new placement of the tape head marker. Let δ be an element of D∗

�
. Then by δ< we

denote the element of (D� ∪ Ď�)
∗

obtained by placing the tape head marker on the
right-most symbol of δ if it exists, and �̌ otherwise, i.e.,

δ< =

¨
ζ ď if δ = ζd (d ∈D�,ζ ∈D∗

�
) , and

�̌ if δ = ǫ .

Similarly, by >δ we denote the element of (D� ∪ Ď�)
∗

obtained by placing the tape
head marker on the left-most symbol of δ if it exists, and �̌ otherwise, i.e.,

>δ =

¨
ďζ if δ = dζ (d ∈D�,ζ ∈D∗

�
) , and

�̌ if δ = ǫ .
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We use this notation under the assumption that from δ extra occurrences of the
symbol � at the left and right extremes have been removed.

DEFINITION 6.4. Let M = (S,A,D,→,↑,↓) be an RTM. The transition system T(M)

associated with M is defined as follows:

1. its set of states is the set of all configurations of M;

2. its transition relation → is the least relation satisfying, for all a ∈ Aτ, d, e ∈D�
and δL ,δR ∈D∗�:

a) (s,δL ďδR)
a−−→ (t,δL

<eδR) iff s a[d/e]L−−−−−→ t, and

b) (s,δL ďδR)
a−−→ (t,δL e >δR) iff s a[d/e]R−−−−−→ t;

3. its initial state is the configuration (↑, �̌); and

4. its set of final states is the set of terminating configurations { (s,δ) | s↓ }. △

Turing introduced his machines to define the notion of effectively computable
function. By analogy, our notion of RTM can be used to define a notion of effectively
executable behaviour.

DEFINITION 6.5. A transition system is executable if it is associated with an RTM. △

This definition automatically gives us the notion of an executable process.

DEFINITION 6.6. An executable process is a divergence-preserving branching bisim-
ilarity class of labelled transition systems containing an executable transition sys-
tem. △

Parallel composition

To illustrate how RTMs are suitable to model a form of interaction, we shall now
define on RTMs a notion of parallel composition, equipped with a simple form of
communication. (We are not trying to define the most general or most suitable
notion of parallel composition for RTMs here; the purpose of the notion of parallel
composition defined here is just to illustrate how RTMs may run in parallel and
interact.) Let C be a finite set of channels for the communication of data symbols
between one RTM and another, and let A′ = { c!d, c?d | c ∈ C, d ∈D� } ; it is assumed
that A′ ⊆ A.

First, we define a notion of parallel composition on transition systems.

DEFINITION 6.7. Let T1 = (S1,→1,↑1,↓1) and T2 = (S2,→2,↑2,↓2) be transition
systems, and let C′ ⊆ C. The parallel composition of T1 and T2 is the transition system�

T1 ‖ T2

�
C′ = (S,→,↑,↓), with S,→, ↑ and ↓ defined by

1. S = S1 × S2;

2. (s1, s2)
a−−→ (s′1, s′2) iff a ∈Aτ −{ c!d, c?d | c ∈ C′, d ∈D� } and either

a) s1
a−−→ s′1 and s2 = s′2, or s1 = s′1 and s2

a−−→ s′2, or

b) a = τ and either s1
c!d−−→ s′1 and s2

c?d−−→ s′2, or s1
c?d−−→ s′1 and s2

c!d−−→ s′2 for
some c ∈ C′ and d ∈D�;
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3. ↑ = (↑1,↑2); and

4. ↓ = { (s1, s2) | s1 ∈ ↓1 ∧ s2 ∈ ↓2 }. △

Then, we can define a similar notion of parallel composition on the associated
transition systems with RTMs.

DEFINITION 6.8. Let M1 = (S1,→1,↑1,↓1) and M2 = (S2,→2,↑2,↓2) be RTMs, and
let C

′ ⊆ C; by
�
M1 ‖M2

�
C′ we denote the parallel composition of M1 and M2.

The transition system T(
�
M1 ‖M2

�
C′) associated with the parallel composition�

M1 ‖C M2

�
C′ of M1 and M2 is the parallel composition of the transition systems

associated with M1 and M2, i.e., T(
�
M1 ‖M2

�
C′) =
�
T(M1) ‖ T(M2)

�
C′ . △

EXAMPLE 6.9. Let M denote the RTM in Figure 6.1. Let A be as in Example 6.2 and
let E denote the RTM in Figure 6.2 below. Then, the parallel composition [M ‖E]i ex-
hibits the behaviour of outputting, along channel o, the string 11#1111# · · ·#1n#. . .

(n≥ 2, n even). ♦

τ[�/1]R τ[�/�]L
τ[1/1]L

τ[�/�]R

i!1[1/1]R
i!#[�/1]R

FIGURE 6.2: An RTM that enumerates and sends the string 1#11#111#. . . .

An unobservable transition of an RTM, i.e., a transition labelled with τ, may
be thought of as an internal computation step. Divergence-preserving branching
bisimilarity allows us to abstract from internal computations as long as they do
not discard the option to execute a certain behaviour. The following notion will
be technically convenient in the remainder of this chapter.

DEFINITION 6.10. Given some transition system T, an internal computation from
state s to s′ is a sequence of states s1, . . . , sn in T such that s = s1

τ−−→ . . . τ−−→ sn = s′.
An internal computation is called fully deterministic iff, for every state si (1 ≤ i < n),
si

a−−→ si
′ implies a = τ and si

′ = si+1. We shall write s ։ s′ if there exists a fully
deterministic computation from s to s′. △

It is easy to see that the following property holds for fully deterministic computa-
tions, as there is no branching.

LEMMA 6.11. Let T be a transition system and let s and t be two states in T. If s ։ s′,
then s and s′ are related by the maximal divergence-preserving branching bisimulation
on T. �
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6.2 Expressiveness of RTMs

To confirm the expressiveness of RTMs, we shall establish in this section that every
effective transition system can be simulated by an RTM up to branching bisimilarity,
and that every boundedly branching computable transition system can be simulated
by an RTM up to divergence-preserving branching bisimilarity. We use this as an
auxiliary result to establish that a parallel composition of RTMs can be simulated by
a single RTM, and we derive from it the existence of universal RTMs.

6.2.1 Effective & Computable Transition Systems

Let T = (S,→,↑,↓) be a transition system; the mapping out : S → 2Aτ×S associates
with every state its set of outgoing transitions, i.e., for all s ∈ S,

out(s) = { (a, t) | s a−−→ t } ,

and fin(_) denotes the characteristic function of ↓.

DEFINITION 6.12. Let T = (S,→,↑,↓) be an Aτ-labelled transition system. We say
that T is effective if → and ↓ are recursively enumerable. We say that T is computable
if both the functions out(_) and fin(_) are recursive. △

The notion of effective transition system originates with Boudol [Bou85]. For the
notion of computable transition system we adopt the definition from [BBK87].

We shall not go into the details of explaining more carefully what are suitable
codings into natural numbers of Aτ and S, and how they should be extended
to codings of →, ↓, out(_) and fin(_) so that the formal theory of recursiveness
makes sense for arbitrary (countable) transition systems. (The reader may want
to consult [Rog67, §1.10] for more explanations.) If → and ↓ are recursively
enumerable, then this, intuitively, means that there exist algorithms that enumerate
the transitions in → and the states in ↓. If the functions out(_) and fin(_) are
recursive, then there exists an algorithm that, given a state s, yields the list of
outgoing transitions of s and determines whether s ∈ ↓. Note that for an RTM the
functions are given by definition.

PROPOSITION 6.13. The transition system associated with an RTM is computable. �

Hence, unsurprisingly, if a transition system is not computable, then it is not
executable either. It is easy to define transition systems that are not computable
(see the following example), so there exist behaviours that are not executable. The
following example takes this a little further and illustrates that there exist behaviours
that are not even executable up to branching bisimilarity.

EXAMPLE 6.14. (In this and later examples, we denote by ϕx the partial recursive
function with index x ∈ N in some exhaustive enumeration of partial recursive
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functions, see, e.g., [Rog67].) Assume that A = {a,b, c } and consider the A-labelled
transition system T0 = (S0,→0,↑0,↓0) with S0,→0, ↑0 and ↓0 defined by

S0 = { s, t,u,v,w } ∪ { sx | x ∈ N } ,

→0 = { (s,a, t), (t,a, t), (t,b,v), (s,a,u), (u,a,u), (u, c,w) }
∪ (s,a, s0)} ∪ { (sx,a, sx+1) | x ∈ N }
∪ { (sx,a, t), (sx,a,u) | ϕx is a total function }

The transition system is depicted in Figure 6.3.

s

tv

s0

uw

s1 s2

a

a

b

a

a

c

a a a a

a

a

a

a

a

a

a

a

FIGURE 6.3: The transition system T0.

To argue that T0 is not executable up to branching bisimilarity, we prove by
contradiction. Suppose that T0 is executable up to branching bisimilarity. Then T0 is
branching bisimilar to a computable transition system T′0. Then, in T′0, the set of states
reachable by a path that contains exactly x a-transitions (x ∈ N) and from which both
a b- and a c-transition are still reachable, is recursively enumerable. It follows that
the set of states in T′0 branching bisimilar to sx (x ∈ N) is recursively enumerable. But
then, since the problem of deciding whether from some state in T′0 there is a path
containing exactly one a-transition and one b-transition such that the a-transition
precedes the b-transition, is also recursively enumerable, it follows that the problem
of deciding whether ϕx is a total function must be recursively enumerable too,
which it is not. We conclude that T0 is not executable up to branching bisimilarity.
Incidentally, note that the language associated with T0 is {anb,anc | n ≥ 1}, which is
recursively enumerable (it is even context-free). ♦

Phillips associates, in [Phi93], with every effective transition system a branching
bisimilar computable transition system of which, moreover, every state has a
branching degree of at most 2. (Phillips actually establishes weak bisimilarity, but
it is easy to see that branching bisimilarity holds.)

DEFINITION 6.15. Let T = (S,→,↑,↓) be a transition system, and let B be a natural
number. We say that T has a branching degree bounded by B if, for every state s ∈ S,
|out(s)| ≤ B. We say that T is boundedly branching if there exists B ∈ N such that the
branching degree of T is bounded by B. △

PROPOSITION 6.16 (Phillips). For every effective transition system T there exists a
boundedly branching computable transition system T′ such that T↔b T′. �
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A crucial insight in Phillips’ proof is that a divergence (i.e., an infinite sequence
of τ-transitions) can be exploited to simulate a state of which the set of outgoing
transitions is recursively enumerable, but not recursive. The following example,
inspired by [Dar89], shows that introducing divergence is unavoidable.

EXAMPLE 6.17. Assume that A = {a,b }, and consider the transition system T1 =

(S1,→1,↑1,↓1) with S1,→1, ↑1 and ↓1 defined by

S1 = { s1,x, t1,x | x ∈ N } ,

→1 = { (s1,x,a, s1,x+1) | x ∈ N } ∪ { (s1,x,b, t1,x) | x ∈ N } ,

↑1 = s1,0 , and

↓1 = { t1,x | ϕx(x) converges } .

The transition system is depicted in Figure 6.4.

s1,0 s1,1 s1,2 s1,3

t1,0 t1,1 t1,2 t1,3

a a a a

b b b b

FIGURE 6.4: The transition system T1.

Now suppose that T2 is a transition system such that T1
↔∆

b
T2, as witnessed by

some divergence-preserving branching bisimulation relation R; we argue that T2 is
not computable by deriving a contradiction from the assumption that it is.

Clearly, since T1 does not admit infinite sequences of τ-transitions, if R is
divergence-preserving, then T2 does not admit infinite sequences of τ-transitions
either. Let s1 be some state in T1 and s2 in T2. It follows that if s1 R s2, then there
exists a state s′2 in T2 such that s2 −−։2 s′2, s1 R s′2, and s′2

τ−−9 . Moreover, since T2

is computable and does not admit infinite sequences of consecutive τ-transitions, a
state s′2 satisfying the aforementioned properties is produced by the algorithm that,
given a state of T2, selects an enabled τ-transition and recurses on the target of the
transition until it reaches a state in which no τ-transitions are enabled. But then we
also have an algorithm that determines if ϕx(x) converges:

1. it starts from the initial state ↑2 of T2;

2. it runs the algorithm to find a state without outgoing τ-transitions, and then it
repeats the following steps x times:

a) execute the a-transition enabled in the reached state;

b) run the algorithm to find a state without outgoing τ-transitions again;

since ↑1 R ↑2, this yields a state s2,x in T2 such that s1,x R s2,x;

3. it executes the b-transition that must be enabled in s2,x, followed, again, by the
algorithm to find a state without outgoing τ-transitions; this yields a state t2,x,
without any outgoing transitions, such that t1,x R t2,x.
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From t1,x R t2,x it follows that t2,x ∈ ↓2 iff ϕx(x) converges, so the problem of
deciding whether ϕx(x) converges has been reduced to the problem of deciding
whether t2,x ∈ ↓2. Since it is undecidable if ϕx(x) converges, it follows that ↓2 is
not recursive, which contradicts our assumption that T2 is computable. ♦

6.2.2 Simulating Boundedly Branching Computable Transition Systems

By Proposition 6.16, in order to prove that every effective transition system can be
simulated up to branching bisimilarity by an RTM, it suffices to prove that every
boundedly branching computable transition system can be simulated by an RTM.

Let T = (ST ,→T ,↑T ,↓T) be a boundedly branching computable transition system,
say with branching degree bounded by B. We shall construct an RTM M =

(SM ,→M ,↑M ,↓M), called the simulator for T, such that T(M)↔∆
b

T.

Tape contents

Let us assume encodings of the functions ð_ñ : out(_) → N, ð_ñ : fin(_) → N, and
the sets ð_ñ : Aτ → {1, . . . , |Aτ| } and ð_ñ : ST → N; the simulator RTM M stores
these functions, actions, states and transitions on its tape as natural numbers. The
existence of the encodings of the functions out(_) and fin(_) is due to the fact that
they are recursive.

The way in which natural numbers are represented as sequences over some finite
alphabet of tape symbols is largely irrelevant, but in our construction below it is
sometimes convenient to have an explicit representation. In such cases, we assume
that numbers are stored in unary notation using the symbol 1. That is, a natural
number n is represented on the tape as the string 1n+1 of n+ 1 occurrences of the
symbol 1. In addition to the symbol 1, we use the symbols ¹ and º to enclose the
(static) codes of the two functions that steer the simulation of T on the tape, | to
separate the elements of a tuple of natural numbers, and # to separate tuples. The
RTM M constructed below will incorporate the operation of some auxiliary Turing
machines that may use some extra encoding and symbols; let D′ be the collection of
all these extra symbols. Then the tape alphabet D of M is

D = {1,¹,º, |,#} ∪D′ .

We shall define M as the union of three fragments: an initialisation fragment,
a state fragment, and a step fragment. The initialisation fragment prepares M for
simulation, the state fragment calculates the possible transitions that can be taken
from the current state and the step fragment actually simulates the step to the next
state. See also the overview diagram in Figure 6.6 later on.

Instead of directly using (conventional) Turing machines computing out(_) and
fin(_) we store their codes on the tape and use a Turing machine to interpret these
codes. This is slightly more generic than necessary; the advantage of proceeding
in this way is that we can easily adapt the simulator to obtain a universal RTM (in
Section 6.2.4).

– 117 –



6.2. EXPRESSIVENESS OF RTMS

Initialisation fragment

The initialisation fragment Init prepares the tape for simulation of T by first writing
the symbol ¹ on the tape, followed by (the codes of) the functions out(_) and fin(_)
belonging to T which are separated by the symbol |. Then it writes the symbol º
on the tape followed by the code of the initial state of T. Thereafter, it returns the
tape head to the symbol º. Let Mi be a (conventional) Turing machine that achieves
precisely this; when started with an empty tape (�̌), it halts with the tape instance
¹ðoutñ|ðfinñº̌ð↑Tñ.

The set of states of Init is defined as

SInit = SMi
\ ↓Mi

,

its initial state is defined as

↑Init = ↑Mi
; and

its set of transitions is defined as

→Init = { (in, d,τ, e, M, in′) | (in, d, e, M, in′) ∈→Mi
, in′ ∈ SMi

\ ↓Mi
}

∪ { (in, d,τ, e, M,↑State) | (in, d, e, M, in′) ∈→Mi
, in′ ∈ ↓Mi

} .

LEMMA 6.18. The fragment Init has a fully deterministic internal computation from
(↑Init, �̌) to (↑State,¹ðoutñ|ðfinñº̌ð↑Tñ). �

State fragment

The state fragment State replaces the code of the current state on the tape by a
sequence of codes that represents the behaviour of T in the current state. It is assumed

that it starts with a tape instance of the form ¹ðoutñ|ðfinñº̌ðsñ with s ∈ ST .
Recall that the functions out(_) and fin(_) are both recursive. Hence, by [Rog67]

there exists a (conventional) deterministic Turing machine Ms that, when it is started

with a tape instance ¹ðoutñ|ðfinñº̌ðsñ terminates with the tape instance

¹ðoutñ|ðfinñº̌ð(s ∈ ↓T)?ñ|ða1ñ| · · · |ðakñ#ðs1ñ| · · · |ðskñ# ,

where out(s) = { (ai, si) | 1 ≤ i ≤ k } and ð(s ∈ ↓T)?ñ is a special code denoting
fin(s), i.e. ðtrueñ or ðfalseñ. Note that, since the branching degree of T is bounded
by B, we have that k ≤ B. We assume without loss of generality that the Turing
machine Ms first copies the codes of out(_) and fin(_) to the right of the symbol º and
thereafter never crosses this boundary symbol again for its computation. We refer to
the sequence (s ∈ ↓T)?,a1, . . . ,ak that is generated and stored on the tape by Ms as the
menu in s.

The set of states of State is defined as

SState = SMs
\ ↓Ms

;
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its initial state is defined as

↑State = ↑Ms
; and

its set of transitions is defined as

→State = { (st, d,τ, e, M, st′) | (st, d, e, M, st′) ∈→Ms
, st′ ∈ SState \ ↓Ms

}
∪ { (st, d,τ, e, M,↑Step) | (st, d, e, M, st′) ∈→Ms

, st′ ∈ ↓Ms
} .

(Note how we associate with Ms (a fragment of) an RTM by adding τ-labels to its
transitions.)

LEMMA 6.19. The fragment State has a fully deterministic internal computation from
configuration (↑State,¹ðoutñ|ðfinñº̌ðsñ) for each s ∈ ST to

(↑Step,¹ðoutñ|ðfinñº̌ð(s ∈ ↓T)?ñ|ða1ñ| · · · |ðakñ#ðs1ñ| · · · |ðskñ#) ,

where the part at the right of the symbol º on the tape represents the menu generated
by applying the functions out(_) and fin(_) to s. �

Step fragment

The purpose of the step fragment Step is to select an action ai from the set of enabled
actions in the current state, execute that action, and remove ð(s ∈ ↓T)?ñ and all (codes
of) actions and states from the tape, except the code of the target state of the ai-
transition.

The state s in the simulated transition system T embodies a choice between its k

outgoing transitions s a1−−→ s1, . . . , s ak−−→ sk, and is terminating if, and only if, s ∈ ↓T . In
order to get a branching bisimulation between T and the transition system associated
with M, the latter will necessarily have to include a configuration offering the same
choice of outgoing transitions and the same termination behaviour. It is important
to note that branching bisimilarity does not, e.g., allow the choice for one of the
outgoing transitions to be made by a computation (resulting in a sequence of τ-
transitions) that eliminates options one by one. The fragment Step will therefore
have to include a special state sp(s∈↓T )?,a1,...,ak

, for every potential menu. (Note that,

since k ≤ B, there will be at most N =
∑B

k=0 2 · |Aτ|k different menus in T.)
The functionality of the step fragment is split up in two parts: before and after the

simulation of an ai-transition. The first part uses the RTM Mpd to decode the menu
on the tape ending up in the state sp(s∈↓T )?,a1,...,ak

from which termination, if enabled,

or an ai-transition can occur. In case the transition is performed, the second part finds
the target state si of the ai-transition. The RTM Mpm will move the code ðsiñ to the
right of the symbol º and the RTM Mpc will empty the remaining part of the tape.

The fragment Step starts from a tape instance of the form

¹ðoutñ|ðfinñº̌ð(s ∈ ↓T)?ñ|ða1ñ| · · · |ðakñ#ðs1ñ| · · · |ðskñ#
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and then progresses to the state sp(s∈↓T )?,a1 ,...,ak
, while removing from the tape the

symbols ð(s ∈ ↓T)?ñ|ða1ñ| · · · |ðakñ; this is a matter of decoding the information on
the tape. For this decoding part we assume that Mpd is an RTM that halts with

the tape instance ¹ðoutñ|ðfinñº� · · ·�#̌ðs1ñ| · · · |ðskñ#. Among the states of Mpd

we have the previously mentioned special states sp(s∈↓T )?,a1,...,ak
for all (s ∈ ↓T?) ∈

{ true, false },a1, . . . ,ak ∈ Aτ, k ≤ B. A state sp(s∈↓T )?,a1,...,ak
is declared final if, and only

if, s ∈ ↓T , and it has an outgoing ai-transitions to the states nei (1≤ i ≤ k).
After the decoding part, the action ai can be performed (while removing the

symbol #) and the fragment ends up in the state nei . The goal of the states nei

down to ne1 is to find the code ðsiñ, replacing the symbols preceding ðsiñ by �, and
to yield the tape instance ¹ðoutñ|ðfinñº� · · ·� >ðsiñ| . . . |ðskñ#.

Let Mpm be an RTM that, when started with above tape instance, moves the
found state code ðsiñ to the right of the symbol º and halts with the tape instance

¹ðoutñ|ðfinñºðsiñ� · · ·�|̌ðsi+1ñ| . . . |ðskñ#.
Then, let Mpc be an RTM that, when started with the above tape instance, empties

the remaining part of the tape, moves the tape head back to the symbol º and halts
with the tape instance ¹ðoutñ|ðfinñº̌ðsiñ.

The set of states of Step is defined as

SStep = (SMpd
∪ {ne1, . . . ,neB } ∪ SMpm

∪ SMpc
) \ (↓Mpd

∪ ↓Mpm
∪ ↓Mpc

) ;

its initial state is defined as

↑Step = ↑Mpd
; and

its set of transitions is defined as

→Step = { (sp, d,τ, e, M, sp′) | (sp, d,τ, e, M, sp′) ∈→Mpd
}

∪ { (sp(s∈↓T ),a1,...,ak
,#,ai,�,R,nei)

| (s ∈ ST)? ∈ { true, false },a1, . . . ,ak ∈Aτ, k ≤ B, 1≤ i ≤ k }
∪ { (nek, 1,τ,�,R ,nek), (nek, |,τ,�,R,nek−1) | 1< k ≤ B }
∪ { (ne1, d,τ, e, M, sp′) | (↑Mpm

, d,τ, e, M, sp′) ∈→Mpm
}

∪ { (sp, d,τ, e, M, sp′) | (sp, d,τ, e, M, sp′) ∈→Mpm
, sp′ ∈ SMpm

\ ↓Mpm
}

∪ { (sp, d,τ, e, M,↑Mpc
) | (sp, d,τ, e, M, sp′) ∈→Mpm

, sp′ ∈ ↓Mpm
}

∪ { (sp, d,τ, e, M, sp′) | (sp, d,τ, e, M, sp′) ∈→Mpc
, sp′ ∈ SMpc

\ ↓Mpc
}

∪ { (sp, d,τ, e, M,↑State) | (sp, d,τ, e, M, sp′) ∈→Mpc
, sp′ ∈ ↓Mpc

} .

See Figure 6.5 for a schematic overview of the fragment Step. Note that in
this figure – for clarity reasons – only one of possibly many states sp(s∈↓)?,a1 ,...,ak

and
transitions thereto is drawn.

As mentioned before we can split the fragment up in two parts; we obtain the
following two lemmas. First, a lemma for the internal computation up until the
action ai can be performed.
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↑Step Mpd
sp(s∈↓)?,a1 ,...,ak

Mpm

ne1 nei. . . nek. . . neB. . .

↑Mpc Mpc ↑State

a1[#/�]R ai[#/�]R
ak[#/�]R

τ[d/�]R
(d ∈D)

τ[|/�]R

τ[d/�]R
(d ∈D)

τ[|/�]R

τ[d/�]R
(d ∈D)

τ[|/�]R

FIGURE 6.5: Diagram of the step fragment.

LEMMA 6.20. The fragment Step (using the auxiliary RTM Mpd) has a fully determin-
istic internal computation from

(↑Step,¹ðoutñ|ðfinñº̌ð(s ∈ ↓T)?ñ|ða1ñ| · · · |ðakñ#ðs1ñ| · · · |ðskñ#)

to

(sp(s∈↓T )?,a1 ,...,ak
,¹ðoutñ|ðfinñº� · · ·�#̌ðs1ñ| · · · |ðskñ#) . �

Second, a lemma for the internal computation after an action ai is performed.

LEMMA 6.21. The fragment Step (using the auxiliary RTMs Mpm and Mpc) has a fully
deterministic internal computation from (nei ,¹ðoutñ|ðfinñº� · · ·� >ðs1ñ| · · · |ðskñ#) to

(↑State,¹ðoutñ|ðfinñº̌ðsiñ). �

Simulator

The simulator RTM M = (SM ,→M ,↑M ,↓M) is defined as the combination of the
fragments Init, State and Step defined above. The set of states of M is defined as
the union of the sets of states of all fragments:

SM = SInit ∪ SState ∪ SStep ;

the transition relation of M is the union of the transition relations of all fragments:

SM =→Init ∪→State ∪→Step ;

the initial state of M is the initial state of Init:

↑M = ↑Init ; and

the set of final states of M consists of the states of Step sp(s∈↓T )?,a1 ,...,ak
where s is a final

state in T

↓M = { sp(s∈↓T )?,a1,...,ak
| s ∈ ↓T } .

Figure 6.6 schematically illustrates how the fragments are combined to constitute
the simulator M.
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�̌

¹ðoutñ|ðfinñº̌ðsñ

¹ðoutñ|ðfinñº̌ð(s ∈ ↓)?ñ|ða1ñ| · · · |ðakñ#ðs1ñ| · · · |ðskñ#

Init

State

Step
ai

FIGURE 6.6: Diagram of the deterministic computable transition system
simulator.

THEOREM 6.22. For every boundedly branching computable transition system T there
exists a reactive Turing machine M such that T(M)↔∆

b
T. �

PROOF. Consider the RTM M of which the definition is sketched above. Using
Lemma 6.18 we define the following relation:

R↑={ (↑T , t) | t ∈ { (↑Init, �̌), . . . , (↑State,¹ðoutñ|ðfinñº̌ð↑Tñ) }} .

Using Lemmas 6.19, 6.20 and 6.21, we define the following relation for each s ∈ ST :

Rs=
�
(s, t) | t ∈ { (nei ,¹ðoutñ|ðfinñº� · · ·� >ðs1ñ| · · · |ðskñ#), . . . ,

(sp(s∈↓T )?,a1 ,...,ak
,¹ðoutñ|ðfinñº� · · ·�#̌ðs1ñ| · · · |ðskñ#) }

	
.

We can now define the relation

R = R↑ ∪
⋃

s∈ST

Rs .

The relation R is a divergence-preserving branching bisimulation between T(M)

and T. �

Combining the above theorem with Proposition 6.16 we can conclude that
reactive Turing machines can simulate effective transition systems up to branching
bisimilarity, but, in view of Example 6.17, not in a divergence-preserving manner.

COROLLARY 6.23. For every effective transition system T there exists a reactive Turing
machine M such that T(M)↔b T. �

Note that all computations involved in the simulation of T are deterministic (see
Lemmas 6.18–6.21). Therefore, if M is non-deterministic, then this is due to a state
sp(s∈↓)?,a1 ,...,ak

of which the menu includes some action a more than once. It follows
that a deterministic computable transition system can be simulated up to divergence-
preserving branching bisimilarity by a deterministic reactive Turing machine.

DEFINITION 6.24. A transition system T = (S,→,↑,↓) is deterministic if, for every
state s ∈ S and for every a ∈ Aτ, s a−−→ s1 and s a−−→ s2 implies s1 = s2. △
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Clearly, if T is deterministic, then, for every state s in T, |out(s)| ≤ |Aτ|. So a
deterministic transition system is boundedly branching, and therefore we get the
following corollary to Theorem 6.22.

COROLLARY 6.25. For every deterministic computable transition system T there exists a
deterministic reactive Turing machine M such that T(M)↔∆

b
T. �

6.2.3 Parallel Composition

Using Theorem 6.22 we can now also establish that a parallel composition of RTMs
can be simulated, up to divergence-preserving branching bisimilarity, by a single
RTM. To this end, note that the transition systems associated with RTMs are
boundedly branching and computable. Further note that the parallel composition
of boundedly branching computable transition systems is again computable. It
follows that the transition system associated with a parallel composition of RTMs
is boundedly branching and computable, and hence, by Theorem 6.22, there exists
an RTM that simulates this transition system up to divergence-preserving branching
bisimilarity. Thus we get the following corollary.

COROLLARY 6.26. For every pair of reactive Turing machines M1 and M2 and for
every set of communication channels C there exists an RTM M such that T(M)↔∆

b
T(
�
M1 ‖M2

�
C). �

6.2.4 Universality

A classical and central notion in the theory of computation is the universal Turing
machine: a Turing machine that can simulate any arbitrary Turing machine on
arbitrary input. Here, the (encoded) description of a Turing machine and the input
are present on the tape beforehand. In this subsection we propose a notion of
universal RTM and investigate to what extent such universal RTMs exist. Naturally,
our notion of universal RTM should reflect our desiderata for introducing RTMs.

Firstly, since our main aim is to formalise communication explicitly, we want a
universal RTM to first receive input via communication rather than finding it on its
tape at the beginning of its operation (recall our assumption that the tape of our RTM
is initially empty). To this end, we associate with the encoding ðMñ of some RTM M

(see [Rog67]) an RTM M that sends ðMñ along channel u, not used by M itself, and
then terminates. This RTM M will be put in parallel with the universal RTM to be
defined, abstracting from communication over the channel u.

Secondly, the simulation of other Turing machines by a universal Turing machine
is in the classical theory up to language equivalence. For example, Hopcroft, Motwani
and Ullman define in [HMU06, Section 9.2.3] the universal Turing machine for the
so-called universal language. Language equivalence is, however, too coarse if one
is interested in the behaviour of an RTM rather than only the function it computes.
Our notion of universal RTM should simulate every RTM up to divergence-preserving
branching bisimulation instead of language equivalence.
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An RTM U is universal (given some coding of RTMs) if for every RTM M it holds
that T(M)↔∆

b

�
M ‖U
�

u
. However, we will show now that such a universal RTM U

does not exist.

PROPOSITION 6.27. There does not exist an RTM U such that for all RTM M it holds
that
�
M ‖U
�

u
↔∆

b
T(M). �

PROOF. Assume the existence of a universal RTM U. Since U is an RTM, it has an
associated transition system that has a branching degree bounded by, say, B. Now,
assume an RTM M such that T(M) has no divergence and has a branching degree
bounded by B+1. In particular, T(M) has a state s that realises the branching degree
bound by having transitions a1, . . . ,aB+1 to B+ 1 pairwise non-bisimilar target states.
If U were to simulate M up to divergence-preserving branching bisimulation, then
there is a state s′ in

�
M ‖U
�

u
related to s that cannot do any (inert) τ-transitions,

but still has to simulate all transitions of s. This means that s′ must have a branching
degree of B+ 1. This is a contradiction. �

If we insist on simulation up to divergence-preserving branching bisimilarity, then
we need to relax the notion of universality.

DEFINITION 6.28. An RTM UB is universal up to branching degree B if for every
RTM M with T(M) bounded by branching degree B it holds that T(M) ↔∆

b�
M ‖UB

�
u
. △

We now present the construction of a collection of RTMs UB for all branching
degree bounds B. For the remainder of this section let M= (SM ,AM ,DM ,→M ,↑M ,↓M)
be an RTM such that the branching degree of T(M) is bounded by B. From our
Definition 6.12, Proposition 6.13, the explanations in [Phi93], and by applying
some standard recursion-theoretic techniques such as the enumeration theorem
(see [Rog67]), it can be shown that the codes of the functions out(_) and fin(_)
belonging to T(M) are recursively computable from ðMñ. Therefore, we can reuse the
simulator RTM defined in Section 6.2.2; it suffices to adapt its initialisation fragment.

Instead of writing the codes of the functions out(_) and fin(_) and the initial state
directly on the tape, the initialisation fragment InitU receives the code ðMñ of an
arbitrary M along some dedicated channel u, yielding the tape instance ðMñ. Let Mri

be an RTM that handles the receiving and storing of the code ðMñ over channel u

when started from an empty tape.
Then, it recursively computes, from ðMñ, the codes of the functions out(_)

and fin(_), and the initial state ↑M of T(M) and stores these on the tape. As
mentioned before, these functions can be computed recursively, and let Mci be the
deterministic Turing machine that, when started from the tape instance ðMñ halts

with the tape instance ¹ðoutñ|ðfinñº̌ð↑Mñ.
The set of states of InitU is defined as

SInitU = (SMr i
∪ SMci

) \ (↓Mr i
∪ ↓Mci

) ,
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its initial state is defined as

↑InitU = ↑Mr i
; and

its set of transitions is defined as

→InitU = { (in, d,τ, e, M, in′) | (in, d,τ, e, M, in′) ∈→Mr i
, in′ ∈ SMr i

\ ↓Mr i
}

∪ { (in, d,τ, e, M,↑Mci
) | (in, d,τ, e, M, in′) ∈→Mr i

, in′ ∈ ↓Mr i
}

∪ { (in, d,τ, e, M, in′) | (in, d, e, M, in′) ∈→Mci
, in′ ∈ SMci

\ ↓Mci
}

∪ { (in, d,τ, e, M,↑State) | (in, d, e, M, in′) ∈→Mci
, in′ ∈ ↓Mci

}

Note that Lemma 6.18 holds for this fragment InitU as well, albeit that the path
constitutes of a different set of configurations.

LEMMA 6.29. The fragment InitU has a fully deterministic internal computation from
(↑InitU, �̌) to (↑State,¹ðoutñ|ðfinñº̌ð↑Mñ). �

Now, when the universal initialisation fragment sets up the simulation, the
state and step fragments (that have already been defined in the previous sec-
tion) can perform the simulation as before. We define the universal RTM UB =

(SUB
,AUB

,UB,→UB
,↑UB

,↓UB
) for each branching degree B as the combination of

the fragments InitU, State and Step defined above. Recall that the fragment Step

contains states for every possible menu but that these menus have a branching
degree that is bounded by B. Because of this we can reuse the step fragment; the
definition of fragment is independent of the transition function it is simulating and
only parametrized by the branching degree bound B.

The set of states of each particular UB is defined as the union of the sets of states
of the fragments:

SUB
= SInitU ∪ SState ∪ SStep ;

the transition relation of UB is the union of the transition relations of all fragments:

SUB
=→InitU ∪→State ∪→Step ;

the initial state of UB is the initial state of InitU:

↑UB
= ↑InitU ; and

the set of final states of UB consists of the states of Step sp(s∈↓T )?,a1 ,...,ak
where s is a

final configuration in T(M)

↓UB
= { sp(s∈↓T )?,a1 ,...,ak

| s ∈ ↓T } .

THEOREM 6.30. For every B there exists an RTM UB such that, for all RTMs M with a
branching degree bounded by B, it holds that T(M)↔∆

b

�
M ‖UB

�
u
. �
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If we drop the requirement that the simulation has to be divergence-preserving,
we can find a single universal RTM. We replace the Turing machine Mci in the
fragment InitU by an adapted version that besides calculating out(_) and fin(_)
also modifies out(_) to reduce the branching degree to at most 2 [BBK87]. This is,
necessarily, at the cost of introducing divergence. The resulting universal RTM U is
universal up to branching bisimulation.

THEOREM 6.31. There exists an RTM U such that, for all RTMs M, it holds that
T(M)↔b

�
M ‖U
�

u
. �

6.3 Explicit Interaction

In this section we show that, up to divergence-preserving branching bisimilarity, every
executable transition system can be specified using the process theory TCPτ [BBR09].
We do this by showing, for any given RTM, the construction of a finite recursive
specification over TCPτ that simulates its behaviour. Our specification will consist of
a finite specification of a process that is a translated version of the finite control of
the RTM, and a finite specification of tape memory. We shall prove that the parallel
composition of these specifications specifies a transition system that is divergence-
preserving branching bisimilar with the transition associated with the RTM. Further
note that our specification deals explicitly with the interaction between the finite
control and the tape of an RTM.

It follows from results obtained by Vaandrager in [Vaa92] that every TCPτ-
specification induces an effective transition system. Hence, by Corollary 6.23, we
also get the converse: every transition system definable in TCPτ is executable up to
branching bisimilarity.

Since we will see that transition systems associated with TCPτ-specifications can
be simulated, up to branching bisimulation, by a finite control interacting with a
queue (we will later see that we can obtain the tape process by supplementing a
queue with some finite control), we can look upon the queue as the canonical TCPτ-
process.

We could argue that TCPτ-specifications can be considered as the process-
theoretic counterparts of unrestricted grammars. In automata and formal language
theory a hierarchy of classes of languages with different expressivity is obtained by
adding/dropping restrictions on the left-hand and right-hand side of grammars. In
process theory, the stricter recursive specification format is used, and different classes
of expressivity are obtained by allowing more/less operators (notably the parallel
composition) in the right-hand sides. This we have also shown for regular expressions
in [BLMT10]. For another study into the expressiveness of TCPτ and the relation to
different types of transition systems, we refer also to [Gla94].

We prove that for every reactive Turing machine M there exists a finite recursive
TCPτ-specification EM and process expression p such that T(M)↔∆

b
TEM
(p). For

clarity, we will present EM in two steps. First, we will consider a finite recursive
specification of the tape process ET and show its correspondence with an infinite
specification of the tape process. Then, we will present a fair translation of the finite
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control of an RTM into a finite recursive specification Efc. We conclude by showing
that the correspondence of the combined finite specification EM with the original
RTM M holds.

The tape

The following infinite recursive specification E∞T specifies the desired behaviour and

interface of a tape process TδL ďδR
for every possible tape instance (d ∈ D�,δL ,δR ∈

D
∗
�

). Each name has an equation that expresses that the data element d under
the head can be sent over channel r (read), a data element e can be received over
channel w (write) to replace the data element under the head, and commands can be
received over channel m (move) to move the head one position to the left (onto δL)
or right (onto δR); each name has the following defining equation:

TδL ďδR

def
= 1+ r!d.TδL ďδR

+
∑

e∈D�

w?e.TδL ěδR
+m?L.TδL

<dδR
+m?R.TδL d >δR

.

Note that this specification allows reading and writing and moving independently, as
it was also originally defined by Turing in [Tur37].

The specification of the tape process above is clearly infinite, since we have a name
for each possible tape instance. Our aim is, however, to have a finite specification.
In earlier work by Baeten, Bergstra and Klop in [BBK87] a finite specification of
a Turing machine is given in ACPτ to simulate computable transition systems up
to bisimilarity; the conventional Turing machine is simulated using finite control
in parallel with two stacks. Their approach to model a tape as two stacks cannot
be reused in our setting, which allows for states that can be terminating and have
outgoing transitions at the same time. Their specification of the stack does not allow
for intermediate termination, and it is not clear how to adapt it so that it does.
Instead, we model the tape using a (first-in first-out) queue, which does allow for
intermediate termination.

The following infinite linear recursive specification E∞Q specifies the behaviour of

the process Qδ modelling a queue with contents δ that receives input over channel i

and sends output over channel o (for every d ∈D�,δ ∈D∗
�

):

Qǫ
def
= 1+
∑

d∈D
i?d.Qd ,

Qδd

def
= 1+ o!d.Qδ +

∑

e∈D
i?e.Qeδd .

Since we want the queue process to have a finite specification too, we use as a
basis for the finite version the recursive specification originally given by Bergstra and
Klop in [BK86], which uses six names, parallel composition, communication over an
input channel i, output channel o and auxiliary channel ℓ, and abstraction. Bezem
and Ponse have shown in [BP97] that this finite recursive specification is branching
bisimilar (without the termination conditions 3 and 4 of Definition 2.5) with the
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infinite recursive specification given above. In their proof, they also show that the
finite recursive specification does not have infinite τ-paths, so in effect they show
divergence-preserving branching bisimilarity.

An alternative finite recursive specification for the queue that we could have used
is the one presented by Van Glabbeek and Vaandrager in [GV93]. Although this
specification would be more in line with our specification of the stack and bag, it
uses the renaming operator which is not in our specification language.

The following specification EQ is an adaptation of the finite specification of
Bergstra and Klop defining a version of the queue that always has the option to
terminate.

Q j,k
p

def
= 1+
∑

d∈D�

j?d.
h

Q
j,p

k
‖ (1+ k!d.Q

p,k

j )
i

p
for all { j, k, p } = { i, o,ℓ }.

Each name represents the process that receives data elements that are inserted
over channel j, sends data elements that are removed over channel k, and uses the
channel p internally. When we choose Q

i,o

ℓ
as the initial name of this specification, it

the same interface as the infinite queue specification E∞Q .

The first time the queue receives a data element, it splits into a two parallel
components such that the first component is ready to receive new data elements
and the second component retains the just received data element. From this moment
on, every time a data element is received, a new parallel component is split off “to the
right” to retain the received data element. See Figure 6.7 for a diagram of the queue
process; depicted is the state when a data elements 0 and 1 have been inserted.

Q
i,o

ℓ 1+ ℓ!1.Q
o,ℓ
i 1+ o!0.Q

ℓ,o
i

i ℓ oo

FIGURE 6.7: Diagram of the queue specification.

When a data element is removed, the parallel component becomes “empty” and
the remaining data elements can be moved to the right by means of (encapsulated)
communication over the internal channels, again resulting in splitting of the parallel
components. See for example the following trace where data elements 0 and 1 are
inserted and then removed:

Q
i,o

ℓ
i?0−−։
�

Qi,ℓ
o ‖ (1+ o!0.Q

ℓ,o
i )
�
ℓ

i?1−−։
h�

Q
i,o

ℓ ‖ (1+ ℓ!1.Q
o,ℓ
i )
�

o
‖ (1+ o!0.Q

ℓ,o
i )
i
ℓ

o!0−−։
h�

Q
i,o

ℓ
‖Q

o,ℓ
i

�
o
‖
�

Qℓ,i
o
‖ (1+ o!1.Q

i,o

ℓ
)
�

i

i
ℓ

o!1−−→
h�

Q
i,o

ℓ
‖Q

o,ℓ
i

�
o
‖
�

Qℓ,io ‖Q
i,o

ℓ

�
i

i
ℓ

At the end, we are left with many empty cells. However, it can easily be shown thath
Q

j,p

k
‖Q

p,k

j

i
p
↔∆

b
Qj,k

p . Thus, the empty cells can be collapsed and removed.

The adaptation with respect to Bergstra and Klop’s specification consists of the
addition of a 1-summand to the defining equation of every name and to the right-most
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component of the therein contained parallel composition. As a result, termination
can occur in every state of the queue, and no other change in behaviour is incurred.
Thus, similarly to [BP97] it can be proved that our infinite recursive specification is
divergence-preserving branching bisimilar – this time with the termination conditions
– with the finite recursive specification given above.

LEMMA 6.32. We have that Qǫ↔∆
b

Qio
ℓ . �

This lemma also allows us to use the more concise notation of the infinite specifi-
cation, Qδ for some δ ∈ D

∗
�

, for a state of the queue process defined by the finite
specification in the proofs below.

We can now define the finite recursive specification of the tape process ET as the
finite recursive specification of the queue EQ and the following equations (d ∈D�)

Hd

def
= 1+ r!d.Hd +

∑

e∈D�

w?e.He +m?L.HL
d +m?R.HR

d ,

HL
d

def
= i!d.
� ∑

e∈D�

o?e.He + o?⊥.i!$.i!⊥.Back
�

,

Back
def
=
∑

d∈D�

o?d.i!d.Back+ o?$.H� ,

HR
d

def
= i!$.i!d.
� ∑

e∈D�

o?e.Fwde + o?⊥.Fwd⊥

�
,

Fwdd

def
=
∑

e∈D�

o?e.i!d.Fwde + o?⊥.i!d.Fwd⊥ + o?$.Hd ,

Fwd⊥
def
=
∑

e∈D�

o?e.i!⊥.Fwde + o?$.i!⊥.H� .

Unlike the stack, the queue allows us to reach any arbitrary data element
contained within in a non-destructive way. We can repeatedly remove a data element
from the queue over channel o and then insert it over channel i; we call this shifting.
Doing this once is called a shift operation. Although shifting suggests the usage of a
queue in a circular fashion, we have to map the (infinite and linear) data structure
of the tape onto the queue. We use the queue to store only the part of the tape to
the left of the head δL and to the right of the head δR and we keep the data element
under the head d in a separate head process Hd . Additionally we use the marker ⊥ as
special queue data element to separate the left from the right part and also to indicate
that the tape can be extended on the left or on the right, when needed, by inserting
elements between ⊥ and δL or between δR and ⊥ respectively. Figure 6.8 illustrates
the mapping of the tape instance δL ďδR and a shift operation.

In the recursive specification ET above the main process Hd models the situation
that the data element d is at the position of the head. This process Hd is put in
parallel with the queue process QδR⊥δL

and provides the interface to the tape. Read
and write operations for the tape are dealt with by the head process without accessing
the queue; shifting only occurs when a move is requested. This is another reason to
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δR δL⊥

dHd :
insert (i) remove (o)

QδR⊥δL
:

FIGURE 6.8: Diagram of the tape process.

have a separate head process that directly handles a read and write operation without
touching the queue: if the data element at the position of the head would be on the
queue as well, every read or write operation for the tape would cause shifting and
require additional operations to get the queue in the right state again.

As mentioned above, moving the head to the left – handled by HL
d

– requires
just one shift operation. However, we have to make sure not to remove the special
marker ⊥ after inserting data element d in the case that the string to the left of the
head (δL) is empty. If this happens, we insert a search marker $ followed by ⊥ and
cycle through the queue completely until $ reappears. We get the following lemma
that establishes that a move to the left behaves as expected using a fixed number of
internal transitions.

LEMMA 6.33. For every d ∈D�,δL ,δR ∈D�∗ we have that

h
HL

d ‖QδR⊥δL

i
i,o
↔∆

b τ.





h
HdL
‖QdδR⊥ζL

i
i,o

if δL = ζL dL ,
h

H� ‖QdδR⊥

i
i,o

if δL = ǫ .
�

PROOF. We prove the validity of the equation by means of an equational reasoning
using the axioms of Table 2.3 (on page 18) and RSP. Then, the lemma follows by

Proposition 2.18 (on page 2.18). We distinguish two cases for δL in
h

HL
d
‖QδR⊥δL

i
i,o

:

1. If δL = ζL dL , then HL
d moves the tape head to the left by performing one shift

operation. So, first the data element under the head d is prefixed to the string
to right of the head (δR), then the right-most date element (dL) of the string to
the left of the head (δL) is removed and put it under the head (see Figure 6.8).

h
HL

d ‖QδR⊥ζL dL

i
i,o
= τ.τ.
h

HdL
‖QdδR⊥ζL

i
i,o
= τ.
h

HdL
‖QdδR⊥ζL

i
i,o

.

2. If δL = ǫ, then HL
d

initially removes the special symbol ⊥ from the queue, inserts

the special search marker $, reinserts ⊥ and then switches to Back. This will
shift through the queue contents until $ is reached. At this point the queue is
consistent again, so it removes the search marker and the blank symbol is put
under the head.
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h
HL

d ‖QδR⊥

i
i,o
= τ.τ.τ.τ.
h

Back ‖Q⊥$dδR

i
i,o

= τ.τ.τ.τ.τ2|dδR |.
h

Back ‖QdδR⊥$

i
i,o

= τ.τ.τ.τ.τ2|dδR |.τ.
h

H� ‖QdδR⊥

i
i,o

= τ.
h

H� ‖QdδR⊥

i
i,o

.

We can observe that there is a fixed upper bound of 2|dδR |+ 5 to the number of
τ-transitions (in the second case). Hence, there is no divergence. �

Because shifting through the queue contents only goes in one direction, we have
to use a different approach for moving the head to the right, which is handled by HR

d
.

This time we need to have the left-most data element of the string to the right of the
queue (δR) and we will have to shift through the entire queue contents to reach it.
We do this by inserting a search marker $ into the queue and shifting through it using
a lookahead that remembers the data element that was previously removed from the
queue. Once we encounter the search marker, we put this previously encountered
data element under the head.

LEMMA 6.34. For every d ∈D�,δL ,δR ∈D�∗ we have that

h
HR

d ‖QδR⊥δL

i
i,o
↔∆

b τ.





h
HdR
‖QζR⊥δL d

i
i,o

if δR = dRζR ,
h

H� ‖Q⊥δL d

i
i,o

if δR = ǫ .
�

PROOF. We prove the validity of the equation by means of an equational reasoning
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2.18.

h
HR

d ‖QδR⊥δL

i
i,o
= τ.τ.τ2|δL |+1.
h

Fwd⊥ ‖QδL d$δR

i
i,o

=




τ.τ.τ2|δL |+1.τ2|dRδR |.τ.

h
HdR
‖QδR⊥δL d

i
i,o

if δR = dRζR

τ.τ.τ2|δL |+1.τ.τ.
h

H� ‖Q⊥δL d

i
i,o

if δR = ǫ

= τ.





h
HdR
‖QδR⊥δL d

i
i,o

if δR = dRζRh
H� ‖Q⊥δL d

i
i,o

if δR = ǫ .

We can observe that there is a fixed upper bound of 2|δL dRδR |+ 4 to the number
of τ-transitions. Hence, there is no divergence. �
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Putting everything together, we get the following result that shows that be-
havioural specification of the tape E∞

T
is divergence-preserving branching bisimilar

with the finite specification ET .

LEMMA 6.35. For each tape instance δL ďδR (δL ,δR ∈ D
∗
�

, d ∈ D�) we have that

TδL ďδR

↔∆
b

h
Hd ‖QδR⊥δL

i
i,o

. �

PROOF. We prove the validity of the equation by means of an equational reasoning
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2.18.

TδL ďδR
=
h

Hd ‖QδR⊥δL

i
i,o

Now, expand the expression using axiom M and move the initial actions of Hd outside:

= 1+ r!d.
h

Hd ‖QδR⊥δL

i
i,o
+
∑

e∈D�

w?e.
h

He ‖QδR⊥δL

i
i,o

+m?L.
h

HL
d ‖QδR⊥δL

i
i,o
+m?R.
h

HR
d ‖QδR⊥δL

i
i,o

By applying Lemma 6.33 and 6.34 and axiom B we get:

= 1+ r!d.
h

Hd ‖QδR⊥δL

i
i,o
+
∑

e∈D�

w?e.
h

He ‖QδR⊥δL

i
i,o

+m?L.τ.





h
HdL
‖QdδR⊥ζL

i
i,o

if δL = ζL dLh
H� ‖QdδR⊥

i
i,o

if δL = ǫ

+m?R .τ.





h
HdR
‖QζR⊥δL d

i
i,o

if δR = dRζLh
H� ‖Q⊥δL d

i
i,o

if δR = ǫ

= 1+ r!d.TδL ďδR
+
∑

e∈D�

w?e.TδL ěδR
+m?L.TδL

<dδR
+m?R.TδL d >δR

.

We can observe that there are no τ-loops introduced by the specification. When
moving left or right either one shift operation happens or we shift until the search
marker is found, both yield a finite number of τ-transitions. Hence, no divergence is
introduced. �

Finite control

Let M = (S,A,D,→,↑,↓) be some RTM. We can write its associated transition
system T(M) as a linear specification E∞

M
, which is infinite if T(M) is infinite.
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This recursive specification E∞
M

contains a name Ss,δL ďδR
for each reachable

configuration (s,δL ďδR) (s ∈ S, d ∈ D�,δL ,δR ∈ D�
∗) from the initial configuration

(↑, �̌). Each name Ss,δL ďδR
is defined by the following equation:

Ss,δL ďδR

def

=
∑

(s,d,a,e,L ,t)∈→
a.St,δL

<eδR
+
∑

(s,d ,a,e,R ,t)∈→
a.St,δL e >δR

[+ 1]s↓ .

Here, [+ 1]s↓ indicates that the 1-summand is only present if s is a final state. By
construction the transition system TE∞

M

(S↑,�̌) is isomorphic with T(M).

PROPOSITION 6.36. The transition system T(M) is divergence-preserving branching
bisimilar with TE∞

M

(S↑,�̌). �

Now that we have captured the behaviour of an RTM with an infinite recursive
specification, it remains to construct a finite recursive specification and show that
it is divergence-preserving branching bisimilar. We now present a finite recursive
specification Efc for the finite control of M. For every state s ∈ S and data element
d ∈ D� we add the name Cs,d to Efc with the following equation (s, t ∈ S, a ∈ Aτ,
d, e ∈D�, M ∈ { L,R }):

Cs,d
def
=
∑

(s,d ,a,e,M,t)∈→


a.w!e.m!M.
∑

f∈D�

r? f.Ct , f


 [+ 1]s↓ .

In Efc each name Cs,d represents the part of the finite control of the RTM execution
process where a transition can be chosen based on the current state and data element
under the head. Once some action a is non-deterministically chosen, the tape – as
explained above – is instructed over channel w to write data element e on the place
under the head, then it is instructed over channel m to move the head to the left or
right and finally over channel r to read the data element f under the new position of
the head.

Now, if we put the finite control in parallel with the tape, we can obtain the
following lemma.

LEMMA 6.37. For each configuration (s,δL ďδR) of a reactive Turing machine M we have

that Ss,δL ďδR

↔∆
b

h
Cs,d ‖ TδL ďδR

i
r,w,m

. �

PROOF. In this proof we want to relate each reachable configuration, represented
by the name Ss,δL ďδR

, from the initial configuration of some RTM M to a name Cs,d

in the finite control specification Efc put in parallel with a tape process with the
corresponding contents, while encapsulating and abstracting from communication
between the finite control and tape process. For example, if we have an RTM that has
the configuration (s,δL ďδR) and has the transition s a[d/e]L−−−−−→ t in its transition relation,
then the desired relation between a step in (a part of) the transition system associated
with the RTM and the transitions in the specification are shown in Figure 6.9.
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(s,δL ďδR )

(t,ζL ďLeδR )

h
Cs ,d ‖ TδL ďδR

i
r,w,m

h
w!e.m!L .
∑

f∈D� r? f .Ct , f ‖ TδL ďδR

i
r,w,m

h
Ct ,dL
‖ TζL ďL eδR

i
r,w,m

a a

FIGURE 6.9: Relation between an RTM transition and specification transitions.

We now proceed to show that E∞
M

is branching bisimilar with Efc ∪ E∞T by means

of equational reasoning using the axioms of Table 2.3 and RSP. Then, the lemma
follows by Proposition 2.18.

Ss,δL ďδR
=
h

Cs,d ‖ TδL ďδR

i
r,w,m

Unfold
h

Cs,d ‖ TδL ďδR

i
r,w,m

and, per transition, move the action outside (by applying

almost all of the axioms).

=
∑

(s,d,a,e,M,t)∈→
a.


w!e.m!M.
∑

f∈D�

r? f.Ct, f ‖ TδL ďδR




r,w,m

[+ 1]s↓

Three communications with the tape follow by axiom CM5 and are moved outside by
D1–D5 and TI1–TI5.

=
∑

(s,d,a,e,M,t)∈→
a.τ.


m!M.
∑

f∈D�

r? f.Ct, f ‖ TδL ěδR




r,w,m

[+ 1]s↓

=
∑

(s,d,a,e,L ,t)∈→
a.τ.τ.



∑

f∈D�

r? f .Ct, f ‖ TδL
<eδR




r,w,m

+

∑

(s,d,a,e,R ,t)∈→
a.τ.τ.



∑

f∈D�

r? f.Ct, f ‖ TδL e >δR




r,w,m

[+ 1]s↓

=
∑

(s,d,a,e,L ,t)∈→
a.τ.τ.τ.
h

Ct,g ‖ TδL
<eδR

i
r,w,m
+

∑

(s,d,a,e,R ,t)∈→
a.τ.τ.τ.
h

Ct,g ′ ‖ TδL e >δR

i
r,w,m

[+ 1]s↓
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We can remove the three τ-transitions by axiom B.

=
∑

(s,d,a,e,L ,t)∈→
a.
h

Ct,g ‖ TδL
<eδR

i
r,w,m
+

∑

(s,d,a,e,R ,t)∈→
a.
h

Ct,g ′ ‖ TδL e >δR

i
r,w,m

[+ 1]s↓

=
∑

(s,d,a,e,L ,t)∈→
a.St,δL

<eδR
+
∑

(s,d ,a,e,R ,t)∈→
a.St,δL e >δR

[+ 1]s↓ .

We can observe that no τ-loops or infinite τ-paths are introduced by the specification,
nor by the queue as is shown in Lemma 6.33 and 6.34. Hence, there is no
divergence. �

We have now established a finite version of the specifications for all three
components of an RTM. This brings us to the following main result.

THEOREM 6.38. For every reactive Turing machine M there exists a finite recursive
TCPτ-specification EM and TCPτ-process expression p such that T(M)↔∆

b
TEM
(p). �

PROOF. Choose EM = Efc ∪ ET and p =
�

C↑,� ‖
�

H� ‖Q⊥
�

i,o

�
r,w,m

. Then the theorem

follows from Property 6.36 and Lemmas 6.32, 6.35, and 6.37. �

As a corollary we find that every executable transition system is definable, up
to divergence-preserving branching bisimilarity, by a recursive TCPτ-specification.
Since there exist recursive specifications with an unboundedly branching associated
transition system (see, e.g., [BCLT10], for the converse of the aforementioned
theorem), we have to give up divergence-preservation. Since the transition system
associated with a finite recursive specification is clearly effective, we do get, by
Corollary 6.23, the following result.

COROLLARY 6.39. For every finite recursive TCPτ-specification E and TCPτ-process
expression p, there exists an RTM M such that TE(p)↔b T(M). �

If we combine the above theorem with Theorem 6.22, Corollary 6.23 and
Corollary 6.25 we get the following results.

COROLLARY 6.40. Every boundedly branching computable transition system and every
deterministic computable transition system is definable, up to to divergence-preserving
branching bisimilarity, by a finite TCPτ-specification. �

COROLLARY 6.41. Every effective transition system is definable, up to branching
bisimilarity, by a finite TCPτ-specification. �

– 135 –



6.4. CONCLUSIONS

6.4 Conclusions

We have proposed a notion of reactive Turing machine and discussed its expres-
siveness in bisimulation semantics. Although it is not the aim of this work to
contribute to the debate as to whether interactive computation is more powerful
than traditional computation, our notion of RTM may nevertheless turn out to be a
useful concept in the discussion. For instance, our result that the parallel composition
of RTMs can be simulated by an RTM seems to contradict the conjecture implied
in [GSAS04, Section 11] that concurrent interactive computation is more expressive
than sequential interactive computation.

To be sure, however, we would need to firmly establish the robustness of our
notion by showing that variations on its definition (e.g., multiple tracks or multiple
tapes), and by showing that it can simulate the other proposals (persistent Turing
machines [GSAS04], interactive Turing machines [LW00, WL08]). We also intend to
consider interactive versions of other computational models. The λ-calculus would
be an interesting candidate to consider, because of the well-known result that it is
inherently sequential. This suggests that an interactive version of λ-calculus will
be less expressive than RTMs. In particular, we conjecture that the evaluation of
parallel-or or McCarthy’s amb can be simulated with RTMs.

RTMs may also prove to be a useful tool in establishing the expressiveness of
process theories. For instance, the transition system associated with a π-calculus
expression is effective, so it can be simulated by an RTM, at least up to branching
bisimilarity. The π-calculus can to some extent be seen as the interactive version of
the λ-calculus. We conjecture that the converse – every executable transition system
can be specified by a π-calculus expression – is also true, but leave the details for
future work.

Petri showed already in his thesis [Pet62] that concurrency and interaction
may serve to bridge the gap between the theoretically convenient Turing machine
model of a sequential machine with unbounded memory, and the practically more
realistic notion of extensible architecture of components with bounded memory. The
specification we present in the proof of Theorem 6.38 is another illustration of this
idea: the unbounded tape is modelled as an unbounded parallel composition. It
would be interesting to further study the inherent trade-off between unbounded
parallel composition and unbounded memory in the context of RTMs, considering
unbounded parallel compositions of RTMs with bounded memory.

In this chapter we have established that the simulation of other RTMs by a
universal RTM is not possible up to divergence-preserving branching bisimilarity.
An RTM can at best simulate other RTMs with the same or a lower bound on
their branching degree. But we have also shown that if we drop the divergence-
preservation requirement, then universal RTMs do exist.

Finally, we have considered the correspondence between RTMs and the process
theory TCPτ. We have seen that every executable transition system is, up to
divergence-preserving branching bisimilarity, definable by a finite recursive TCPτ-
specification. Interestingly, sequential composition is not used at all in the specifica-
tions. This means that BCPτ is already sufficient and it can also be done with CCS.
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Figure 6.10 presents a schematic overview of the main correspondence results of
this chapter. If we consider these results, we can conclude that that bisimilarity gives
a much finer perspective on the behaviour of Turing machines.

RTMs finite recursive
TCPτ-specifications

explicit
interaction�

p ‖ T
�

i,o

executable transi-
tion systems

b. branching
computable
transition

systems

effective

transition systems

[Vaa92]Thm. 6.22

Prop. 6.16

Thm. 6.38Cor. 6.39

FIGURE 6.10: Correspondence results.

Note that there are a few indirect correspondences in the overview. Finite
recursive TCPτ-specifications induce effective transition systems, which can be
reduced to executable transition systems at the cost of losing divergence-preservation.
Hence, there exists an RTM that simulates these specifications up to branching
bisimilarity. Because subsequently this RTM can be defined by a finite recursive TCPτ-
specification consisting of a finite-state process communicating with the queue, the
queue can be considered as the canonical TCPτ-process. Note also that because RTMs
can be defined by these finite recursive TCPτ- specifications that make the interaction
explicit, we obtain an indirect correspondence between RTMs and finite recursive
TCPτ-specifications in general.
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Chapter 7

Conclusions

Following the Chomsky hierarchy, we have discussed several kinds of systems in
the main chapters of this thesis (Chapters 3–6). For each class of systems we have
first investigated the automata augmented with memory as a central notion, except
for finite-state systems, which are memoryless. Then we have looked at a suitable
specification language and investigated the correspondence of that language with the
notion of automaton at hand. Finally, for each class of systems we have made the
interaction within the automaton, between finite control and memory, explicit.

7.1 Automata

We have started with finite automata that can be used to represent memoryless, finite
control. We have seen that finite transition systems are essentially finite automata
and that, up to (divergence-preserving) branching bisimilarity, deterministic finite
automata form a subclass of the (non-deterministic) finite automata.

When we augment finite automata with memory, we can associate with an
automaton transition systems with a possibly infinite number of states. Based on
the chosen memory and semantics, we get different classes of associated transition
systems. If we augment finite automata with stack memory, we get pushdown
automata; if we augment them with bag memory, we get parallel pushdown
automata; and if we augment them with tape memory, we get reactive Turing
machines. The different classes of automata yield different classes of transition
systems. We have also seen that for (i) termination on final state, (ii) termination
when the memory is empty, and (iii) termination on both final state and when the
memory is empty, we get different classes of transition systems. In our definitions
the stack of a PDA has an empty-test, while the bag of the PPDA does not include it.
It would be interesting to see what transition system classes can be obtained if the
situation is reversed. For RTMs we have investigated termination on final state only.
In the future, other termination conditions could be considered.

The aforementioned differences in classes appear if we consider them up to
(divergence-preserving) branching bisimilarity. If we consider the classes up to
language equivalence, then all class differences collapse. Thus, we have seen that
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from a process-theoretic point of view it matters how the definition of the automaton
– of the memory and its interaction in particular – is chosen.

7.2 Specifications

We have seen that for each class of systems there exists a suitable specification
language. For finite-state systems we have proposed the linear specifications,
for pushdown systems the sequential specifications, and for parallel pushdown
systems the basic parallel specifications. For computable and executable systems we
have reused finite recursive TCPτ-specifications. We have explored the correspon-
dence between these specification languages and the automata that belong to the
respective class.

For finite-state systems, the correspondence between finite automata and linear
specifications holds up to isomorphism.

For pushdown systems the correspondence is deficient. We have seen that pop
choice-free pushdown automata can be given, up to divergence-preserving branching
bisimilarity, by a sequential specification. It is clear that not every non-pop choice-free
pushdown automaton can be given by a sequential specification. However, it would
be worth investigating whether the pop choice-freeness restriction is optimal. In the
other direction, we have seen that due to the presence of the empty process in the
specification language, we can get unbounded branching in the associated transition
systems. We conjecture that a pushdown transition system cannot have unbounded
branching. We applied the transparency-restrictedness restriction on sequential
specifications and showed that they can be simulated, up to divergence-preserving
branching bisimilarity, by a (pop choice-free) pushdown automaton. It is clear that
the transparency-restricted requirement is too strict. There are non-transparency-
restricted sequential specifications that do not have unbounded branching in their
associated transition systems.

For parallel pushdown systems the correspondence results are different, but
still deficient. We have shown that fully opaque, fully transparent, and mixed
opaque/transparent recursive specifications can be simulated, up to divergence-
preserving branching bisimilarity, by a parallel pushdown automaton. It is just a
matter of choosing the right termination condition. For the mixed specification we
have introduced an extra termination condition to obtain the correspondence result:
termination on final state and transparent bag, i.e. a bag that only contains data
elements which are designated as transparent. In the other direction, only single-state
parallel pushdown automata can be given, up to divergence-preserving bisimilarity,
by basic parallel specifications.

For computable and executable systems we have investigated the expressiveness
of RTMs rather than the correspondence of RTMs with finite recursive TCPτ-
specifications. It follows from results in the literature that transition systems associ-
ated with finite recursive TCPτ-specifications are effective transition systems, which
can be reduced to executable transition systems at the cost of losing divergence-
preservation. We have shown that executable transition systems can be simulated,
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up to divergence-preserving branching bisimilarity, by an RTM, thus obtaining the
correspondence from specifications to RTMs indirectly. In the other direction, we
also obtain the result indirectly: by making the interaction in an RTM explicit, we
obtain a finite recursive TCPτ-specification.

7.3 Explicit Interaction

In the case of finite-state systems, we have discussed regular expressions rather than
explicit interaction; we presented the correspondence between finite automata and
extended regular expressions, i.e. regular expressions extended with communication
and encapsulation. We could interpret this as making the interaction within a finite
automaton explicit. Indeed, each state has a parallel component and control is
handed over via communication.

The way the interaction within a pushdown automaton is made explicit depends
on the termination condition. For termination on (final state and) empty stack
we have shown that we can find a linear specification of the finite control of the
pushdown automaton, put it in parallel with the sequential specification of the stack
and obtain the correspondence up to divergence-preserving branching bisimilarity.
For termination on final state we need an always-terminating stack. We have shown
that there exists no such sequential specification. Putting the linear specification
mentioned above in parallel with a finite recursive TCPτ-specification of an always-
terminating stack, we are able to obtain the correspondence.

For basic parallel pushdown automata we considered termination on final state
and on (final state and) empty bag. We also considered termination on final state
and transparent bag. It turned out we could find a single linear specification of the
finite control of the parallel pushdown automaton. When we put it in parallel with
different basic parallel specifications of the bag, we could obtain the correspondence
results, up to branching bisimilarity, for parallel pushdown automata with respective
termination conditions: the bag for termination on (final state and) empty bag, the
transparent bag for termination on final state and the partially transparent bag for
termination on final state and transparent bag. It remains an open question whether
divergence-preservation can be included as well.

In the case of computable and executable systems we have made the interaction
within the RTM explicit. We could find a linear specification for the finite control of
the RTM. To obtain a tape we add some linear specification and put it in parallel with
a finite recursive TCPτ-specification of a queue. When the tape is put in parallel with
the linear specification of the finite control, we obtained the correspondence, up to
divergence-preserving branching bisimilarity, with the RTM.

7.4 Future Directions

In this thesis we have been mainly concerned with classical results from automata
and formal language theory. We have chosen our definitions as close as possible
to automata theory to get the tightest correspondences. In the future, variations of
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definitions of the PDA, PPDA and RTM could be explored. For example, the afore-
mentioned different termination conditions for the RTM or the absence/presence of
the empty-test in the PDA and PPDA.

We have seen that the correspondence, up to (divergence-preserving) branching
bisimilarity, between specification languages and automata with memory are not
complete. In future work we could explore up until which equivalences the
correspondences do hold. A step in this direction was already made in [BCT08]
by giving the correspondence between the full class of sequential specifications and
pushdown automata by stepping down to contrasimulation.

We have omitted in this thesis the Petri nets and context-sensitive languages. It
would be interesting to study how these notions fit in the framework that we have
presented in this thesis. From the specification language side, this also holds for the
specifications language that is the combination of the sequential and basic parallel
specifications.

In general, it would be worthwhile to compare the models of computation (or
execution) to other notions with interaction found in literature. For example, the
comparison of RTMs with persistent Turing machines. The π-calculus can to some
extent be seen as the interactive version of the λ-calculus. The investigation of the
π-calculus and our RTM could prove to be interesting.
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For a complete overview of the symbols and acronyms used in this thesis, please refer to
the Glossary on page x.

A

A, see action symbol
A
∗, see action sequence

AC , see control action
Aτ, see action, unobservable action
abstraction, 14
accepted language, 10

by finite automaton, 23
by PDA, 41
by PPDA, 82

action, see action symbol
action postfix, 28
action prefix, 14
action sequence, 9
action symbol, 9
alternative composition, 14
always-terminating stack, 72

recursive specification, 71–72
associated transition system, 4

parallel pushdown automaton, 81
pushdown automaton, 40
reactive Turing machine, 112
recursive specification, 14

automata theory, 1
automaton, see finite automaton,

pushdown automaton,
parallel pushdown automaton,
reactive Turing machine

axiomatisation, 17

B

bag, 79
parallel pushdown automaton, 83
parallel pushdown transition

system, 83
recursive specification, 89–90

bag symbol, 79
basic parallel normal form, 89
basic parallel process, 89
basic parallel process expression, 88
basic parallel specification, 88
BCPτ, 16

recursive specification, 88
behavioural equivalence, 5
bisimilarity, see strong bisimilarity
bisimulation, see strong bisimilarity
bisimulation approximation, 99
bisimulation base, 63
bounded branching, 13
BPA, 50

recursive specification, 50
BPA0

process expression, 65
recursive specification, 62

BPP, 88
recursive specification, 104

branching bisimilarity, 10–11
branching degree, 12

bounded, 13
finite, 13
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BSPτ, 16
recursive specification, 25

C

C, see channel
channel, 13
choice, see alternative composition
Chomsky hierarchy, 2
Church-Turing thesis, 2

strong version, 107
communication action, 13
communication function, 13, 32, 88
communication merge, 14
computability theory, 1
computable transition system, 114
computation, 110
computing, 1
concurrency theory, 2
configuration

parallel pushdown automaton, 81
pushdown automaton, 40
reactive Turing machine, 111

context-free grammar, 50
commutative version, 88

context-free language, 41
context-sensitive language, 141
contrasimilarity, 62
control action, 33

D

D, see data symbol
D
∗, see data symbol sequence

D�, see tape symbol
D⊥, see stack symbol
D∗, see bag symbol
data element, see data symbol
data symbol, 13
data symbol sequence, 38
deadlock, see deadlocked process
deadlocked process, 14
defining equation, 14
deterministic

finite automaton, 24
reactive Turing machine, 109
transition system, 122

DFA, see deterministic finite automaton
divergence-preserving branching

bisimilarity, 11

E

E, see recursive specification
effective transition system, 114
effectively computable function, 108
effectively executable behaviour, 108, 112
empty multiset, 79
empty process, 14
empty string, 38
empty word, 9
empty word property, 42
empty-test, 41, 88
encapsulation, 14
ǫ, see empty string, empty word
ε-production, 51
ε-transition, 24
equivalence class, 11
executability, 1, 4
executable process, 112
executable transition system, 112
explicit termination action, 64
extended regular expression, 31

F

fairness assumption, 10
final state, 9
finite automaton, 22

deterministic, 24
non-deterministic, 23
well-behaved, 31

finite branching, 13
finite control, 21

recursive specification
of PDA, 69
of PPDA, 101
of RTM, 132–133

finite-state process, 23
finite-state system, 21
finitely normed name, 64
forgetful stack, 54

recursive specification, 53–54
formal language theory, 2
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G

GNF, see Greibach normal form
grammar, 25

context-free, 50
formal, 2
left-linear, 25
linear, 25
regular, 25
right-linear, 25
unrestricted, 108

Greibach normal form, 19
restricted, 19

guarded, see τ-founded, τ-guarded
guarded recursive specification, 16

I

I, see initial name
inert, see inert transition
inert transition, 12
infinitely normed name, 64
initial name, 15
initial state, 9
initially terminating, 42
insert transition, 82
integration, 3
intermediate termination, 5
internal action, see unobservable action
internal computation, 113

fully deterministic, 113
isomorphism, 26

K

Kleene star, 16, 30

L

L(), see language
labelled transition system, see transition

system
λ-calculus, 1, 136
λ-production, 51
λ-transition, 24
language, 10

acceptance, 10
acceptance by empty stack, 39

acceptance by final state, 39
classes, 2
context-free, 41
context-sensitive, 141
parallel pushdown, 82
pushdown, 41
regular, 23

language acceptor, 23, see also accepted
language

language equivalence, 10
left-linear grammar, 25
left-merge, 14
linear grammar, 25
linear normal form, 28

reversed, 29
linear process expression, 25
linear specification, 25

with postfixing, 28

M

M(), see multiset
marked tape symbol, 111
multiset, 79

difference, 79
empty, 79
notation, 79
singleton, 79
subset, 79
union, 79

N

N, see name
name, 13

finitely normed, 64
infinitely normed, 64

NFA, see non-deterministic finite automa-
ton

no-removal symbol, 79
node, 96

terminal, 97
successful, 97
unsuccessful, 98

non-deterministic finite automaton, 23
non-terminal, see name
norm, 13
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normal form
basic parallel, 89
Greibach normal form, 19
linear, 28

reversed, 29
sequential, 52

restricted, 52

O

occurrence count, 9
opaque, 56

P

P(), see process expression
parallel composition, 14

of reactive Turing machines, 113
of transition systems, 112

parallel pushdown automaton, 79–80
associated transition system, 81
empty-test, 88
example, 80

parallel pushdown language, 82
parallel pushdown process, 82
parallel pushdown transition system, 81
partially transparent bag, 103
PDA, see pushdown automaton
Petri net, 106, 141
π-calculus, 3, 136
pop choice, 59
pop choice-free, 59
pop transition, 41
PPDA, see parallel pushdown automaton
process, 11

basic parallel, 89
executable, 112
finite-state, 23
parallel pushdown, 82
pushdown, 41
sequential, 52

process algebra, 3
process expression, 13

basic parallel, 88
BPA0-, 65
closed, 14
linear, 25

sequential, 51
TCP∗τ-, 31
TSP∗τ-, 33

process theory, 2
push transition, 41
pushdown automaton, 38

associated transition system, 40
empty-test, 41
example, 39
initially terminating, 42
pop choice-free, 59

pushdown language, 41
pushdown process, 41
pushdown transition system, 40

pop choice-free, 59

Q

queue, 127
recursive specification, 127–129

quotient, 11

R

reachable state, 9
reactive system, 5, 107
reactive Turing machine, 109

associated transition system, 112
example, 110
simulator, 121
universal, 124

receive action, 13
recursive function, 1
recursive specification, 14

associated transition system, 14
BCPτ-, 88
BPA-, 50
BPA0-, 62
BPP-, 104
BSPτ-, 25
guarded, 16
opaque, 56
τ-founded, 16
τ-guarded, 16
TCPτ-, 14
transparent, 56
TSPτ-, 51
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regular expression, 30
extended, 31

regular grammar, 25
regular language, 23
remove transition, 82
reversed linear normal form, 29
right-linear grammar, 25
rooted divergence-preserving branching

bisimilarity, 17–18
RTM, see reactive Turing machine

S

S, see state
send action, 13
sequential

restricted, 52
sequential composition, 14
sequential normal form, 52
sequential process, 52
sequential process expression, 51
sequential specification, 51

transparency restricted, 56
silent action, see unobservable action
silent bisimulation, 18
silent transition, 24
simulator RTM, 121
singleton multiset, 79
skip, see empty process
specification, see also recursive specifica-

tion
basic parallel, 88
linear, 25

with postfixing, 28
sequential, 51

specification language, 5
stack, 41

always terminating, 72
forgetful, 54
pushdown automaton, 42
pushdown transition system, 42
recursive specification, 53

stack empty symbol, 38
stack symbol, 38
state, 9

final, 9

initial, 9
reachable, 9

stateless silent bisimulation, 18
string, see data symbol sequence
strong bisimilarity, 10

without termination, 66
structural operational semantics, 14
successful tableau, 98
successful terminal node, 97
symbol

bag symbol, 79
marked tape symbol, 111
stack symbol, 38
tape symbol, 109

T

T(), see associated transition system
tableau, 96

node, 96
rule, 96
successful, 98

tableau decision method, 96
completeness of, 99
soundness of, 99

tape
recursive specification, 127, 129–

132
tape blank symbol, 109
tape instance, 111
tape symbol, 109
τ, see unobservable action
τ-convergent, see τ-founded
τ-founded, 16
τ-guarded, 16
TCPτ, 13

congruence for, 18
process expression, 13
recursive specification, 14
soundness of, 19

TCP∗τ , 16
process expression, 31

terminal node, 97
termination

on empty bag, 81
on empty stack, 40
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TERMINATION CONDITION WORD

on final state, 40, 81
on final state and empty bag, 81
on final state and empty stack, 40
on final state and transparent

bag, 93
termination condition, 40
termination predicate, see final state
transition

inert transition, 12
insert transition, 82
pop transition, 41
push transition, 41
remove transition, 82

transition relation, 9
transition system, 9

associated with PDA, 40
associated with PPDA, 81
associated with RTM, 112
associated with specification, 14

transparency-restricted, 56
transparent, 56
transparent bag, 90

recursive specification, 90–91
TSPτ, 16

recursive specification, 51
TSP∗τ , 17

process expression, 33
Turing machine, 1, 107

U

unbounded branching, 56
unfolding, 96
universal RTM, 124, 126

up to bounded branching, 124
universal Turing machine, 123
unobservable action, 9
unrestricted grammar, 108
unsuccessful terminal node, 98

V

variable, see name

W

well-behaved finite automaton, 31
word, see action sequence
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Summary

From Computability to Executability
A process-theoretic view on automata theory

The theory of automata and formal languages was devised in the 1930s to provide
models for and to reason about computation. Here we mean by computation a
procedure that transforms input into output, which was the sole mode of operation
of computers at the time. Nowadays, computers are systems that interact with us
and also with each other; they are non-deterministic, reactive systems. Concurrency
theory, split off from classical automata theory in the seventies, provides a model
of computation similar to the model given by the theory of automata and formal
languages, but focuses on concurrent, reactive and interactive systems.

This thesis investigates the integration of the two theories, exposing the differ-
ences and similarities between them. Where automata and formal language theory
focuses on computations and languages, concurrency theory focuses on behaviour.
To achieve integration, we look for process-theoretic analogies of classic results from
automata theory. The most prominent difference is that we use an interpretation
of automata as labelled transition systems modulo (divergence-preserving) branching
bisimilarity instead of treating automata as language acceptors. We also consider
similarities such as grammars as recursive specifications and finite automata as
labelled finite transition systems. We investigate whether the classical results still
hold and, if not, what extra conditions are sufficient to make them hold.

We especially look into three levels of Chomsky’s hierarchy: we study the notions
of finite-state systems, pushdown systems, and computable systems. Additionally we
investigate the notion of parallel pushdown systems. For each class we define the
central notion of automaton and its behaviour by associating a transition system with
the automaton. Then we introduce a suitable specification language and investigate
the correspondence with the respective automaton (via its associated transition
system). Because we not only want to study interaction with the environment, but
also the interaction within the automaton, we make the interaction explicit by means
of communicating parallel components, with one component representing the finite
control of the automaton and one component representing the memory.
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First, we study finite-state systems by reinvestigating the relation between finite-
state automata, left- and right-linear grammars, and regular expressions, but now up
to (divergence-preserving) branching bisimilarity.

For pushdown systems we augment the finite-state systems with stack memory to
obtain the pushdown automata and consider different termination styles: termination
on empty stack, on final state, and on final state and empty stack. Unlike for language
equivalence, up to (divergence-preserving) branching bisimilarity the associated
transition systems for the different termination styles fall into different classes. We
obtain (under some restrictions) the correspondence between context-free grammars
and pushdown automata for termination on final state and empty stack. Finally, we
make the interaction within a pushdown automaton explicit, but in a different way
depending on the termination style.

By analogy with pushdown systems we investigate the parallel pushdown sys-
tems, obtained by augmenting finite-state systems with bag memory, and consider
analogous termination styles. We investigate the correspondence between context-
free grammars that use parallel composition instead of sequential composition and
parallel pushdown automata. While the correspondence itself is rather tight, it
unfortunately only covers a small subset of the parallel pushdown automata, i.e.
the single-state parallel pushdown automata. When making the interaction within
parallel pushdown automata explicit, we obtain a rather uniform result for all
termination styles.

Finally, we study computable systems and the relation with effective and com-
putable transition systems and Turing machines. For this we present the reactive
Turing machine, a classical Turing machine augmented with capabilities for interac-
tion. Again, we make the interaction in the reactive Turing machine between its finite
control and the tape memory explicit.
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Samenvatting

Van berekenbaarheid naar uitvoerbaarheid
Een procestheoretische kijk op de automatentheorie

De theorie van automaten en formele talen heeft zijn oorsprong in de jaren dertig.
In die tijd werden er modellen opgesteld, zoals bijvoorbeeld de Turingmachine,
om te kunnen beredeneren wat berekenbaar is en wat niet. Met een ‘berekening’
bedoelen we hier de transformatie van invoer naar uitvoer. Destijds was het
herhaaldelijk uitvoeren van de bijbehorende operatie het enige wat computers
konden. Tegenwoordig zijn computers echter systemen die interactief zijn; ze
wisselen continu informatie uit, niet alleen met de gebruiker maar ook met elkaar.
De procestheorie, afgesplitst van de automatentheorie in de jaren zeventig, gebruikt
berekeningsmodellen die erg lijken op die van de theorie van automaten en formele
talen, maar meer zijn gericht op parallelle, reactieve en interactieve systemen.

Dit proefschrift onderzoekt de integratie van deze twee theorieën met als doel
de verschillen en overeenkomsten bloot te leggen. Waar de theorie van automaten
en formele talen de nadruk legt op berekeningen en talen, legt de procestheorie de
nadruk op gedrag. Om tot integratie te komen, zoeken we naar procestheoretische
analogieën van klassieke resultaten uit de automatentheorie. Het prominentste
verschil is dat we hierbij automaten interpreteren als gelabelde transitiesystemen
modulo vertakkende bisimulatie, in plaats van automaten te beschouwen als accep-
tanten van een taal. (Wanneer mogelijk, proberen we te zorgen dat de vertakkende
bisimulatierelatie ook divergentiebehoudend is.) We bekijken daarnaast klassieke
overeenkomsten zoals die tussen grammatica’s en recursieve specificaties en tussen
eindige automaten en transitiesystemen.

We volgen in dit proefschrift drie niveaus van Chomsky’s hiërarchie, die de vol-
gende klassen van systemen omschrijven: eindige systemen, pushdownsystemen en
berekenbare systemen. Daarnaast verkennen we de notie van parallelle pushdown-
systemen. Voor iedere klasse definiëren we een bijbehorende automaat en leggen we
het gedrag vast door er een transitiesysteem mee te associëren. Vervolgens introdu-
ceren we een geschikte specificatietaal en onderzoeken we de overeenstemming met
de respectievelijke automaat, via het geassocieerde transitiesysteem. Omdat we niet
alleen de interactie van het systeem met de omgeving willen bestuderen, maar ook de
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interactie die plaatsvindt binnen de automaat, maken we deze laatste expliciet door
de introductie van communicerende parallelle componenten: een component die de
eindige besturing van de automaat representeert en een component die het geheugen
representeert.

Eerst bestuderen we eindige systemen (zonder geheugen) door de relaties tussen
eindige automaten, links- en rechtslineaire grammatica’s, en reguliere expressies
opnieuw te bekijken, maar nu met behulp van (divergentiebehoudende) vertakkende
bisimulatie.

Voor pushdownsystemen verkrijgen we pushdownautomaten door eindige syste-
men uit te breiden met stackgeheugen. We beschouwen verschillende terminatiestij-
len: terminatie bij lege stack; in een eindtoestand; bij lege stack én in een eindtoe-
stand. Voor vertakkende bisimulatie vallen de geassocieerde transitiesystemen voor
de verschillende terminatiestijlen uiteen in verschillende klassen, wat niet het geval is
voor taalgelijkheid. We verkrijgen, onder enkele restricties, de overeenkomst tussen
contextvrije grammatica’s en pushdownautomaten voor terminatie bij lege stack én
in een eindtoestand. Ten slotte maken we interactie binnen de pushdownautomaat
expliciet. De manier waarop dit gebeurt, wordt echter bepaald door de terminatiestijl.

Op vergelijkbare wijze als met pushdownsystemen onderzoeken we de paral-
lelle pushdownsystemen, verkregen door eindige systemen uit te breiden met een
baggeheugen. We beschouwen wederom de verschillende terminatiestijlen zoals
eerder genoemd. We onderzoeken de overeenkomst tussen commutatieve context-
vrije grammatica’s, die parallelle compositie gebruiken in plaats van sequentiële
compositie, en parallelle pushdownautomaten. Hoewel de overeenkomst relatief
sterk is, dekt de relatie maar een kleine deel van alle parallelle pushdownautomaten
af, namelijke die met slechts één toestand. Door het expliciet maken van de interactie
binnen de parallelle pushdownautomaat krijgen we echter wel een mooi en uniform
resultaat voor alle terminatiestijlen.

Ten slotte bestuderen we berekenbare systemen en de relatie met effectieve en
berekenbare transitiesystemen en Turingmachines. Hiertoe introduceren we de
reactieve Turingmachine: een klassieke Turingmachine uitgerust met mogelijkheden
om interactie aan te gaan met zijn omgeving. Wederom maken we ook de interactie
binnen de reactieve Turingmachine expliciet, dat wil zeggen tussen de eindige
besturing en tapegeheugen.
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