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Summary

This thesis investigates the equational theory of CCS modulo bisimulation. In
earlier work equational bases are given for fragments of CCS with parallelism
but without restriction. Restriction is essential for the specification of parallel
processes. Although it has been a part of the common process algebras, it has
never been fully axiomatised. The goal of this thesis is to determine if the result
of earlier work can be generalised to a theory with restriction.
First we discuss a simple fragment of CCS that does not have any form of
parallelism. We establish a finite, complete axiomatisation and prove its com-
pleteness. Then a more contrived variant with parallelism is considered using
the left merge and communication merge from ACP. This variant only considers
interleaving of actions. We establish an extension of the previous axiomatisation
for which we prove completeness and partial soundness. The third variant adds
communication. For this variant we only investigate the problems involved with
proving the completeness of a proposed equational base. We are not yet able to
present a complete solution. We find that restriction does not distribute over
parallel composition if communication is possible. We conclude that a straight-
forward extension of the completeness proof for the fragment of CCS without
restriction is not possible.
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Chapter 1

Introduction

The Calculus of Communication Systems (CCS) was developed by Robin Mil-
ner in the late seventies of the 20th century [11]. The calculus introduced a
system for describing processes in a formal language using transition systems
to interpret the expressions in this language. The restriction operator, already
part of CCS when it was introduced, takes a process and a set of actions as
arguments. It blocks the execution by the process of the actions in the set.
Restriction is often used in specifying systems where it blocks the execution of
interleaving actions of parallel processes so that only the result of (synchronous)
communication remains. Restriction is also present in ACP [5], where it is called
encapsulation.
This thesis deals with equational bases for the CCS process algebra modulo
bisimulation [15]. Equational bases are sets of valid equations from which ev-
ery other valid equation can be derived. These complete axiomatisations are
useful starting points for proving properties of elements of the algebra, but also
for systematisation of previously formulated concepts. Axiomatisations are the
driving force for development of the process algebras. Early work in this area
was done by Hennessy and Milner in [10, 12], where they proposed an infi-
nite axiomatisation for CCS and proved it ground-complete, i.e. only for terms
without variables. In 1984 Bergstra & Klop presented ACP [5]—the Algebra of
Communication Processes, a reformulation of CCS. They added two operators,
left merge and communication merge, and obtained a finite ground-complete ax-
iomatisation with parallelism. Later, Moller proved in his PhD thesis [13] that
CCS with only the merge operator has no finite ground-complete axiomatisa-
tion. He also redid the proof of Hennessy and Milner and obtained a stronger
result by proving the axiomatisation of a basic fragment of CCS with left merge
ω-complete. (An axiomatisation is ω-complete if any equation is derivable un-
der all closed substitutions, then the equation itself is also derivable.) For more
information about the history of process algebra see [3].
However, all the above-mentioned finite bases and completeness proofs do not
cover complete, i.e. ground-complete and ω-complete, axiomatisations includ-
ing communication. In [2] equational bases for more extensive fragments of
CCS are proposed and proved sound and complete. Although these fragments
consider parallelism, each one does not include restriction. The goal of this
thesis is to determine if the equational bases from [2] can be extended and the
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proofs generalised to a theory that includes restriction. Because parallelism,
especially communication, in combination with restriction adds complexity to
the completeness proofs, the thesis will deal with the extensions incrementally.
In [1], two methods for proving the completeness of a base are mentioned: the
classic normal form strategy, and the inverted substitutions technique described
by Groote [9]. Following [2] and [13] we use the normal form strategy. This
entails showing that all process terms can be proved equal to some normal
form using the axioms. This is followed by the construction of a distinguishing
valuation that ensures that two normal forms are identical under this valuation
only if they can be proved equal.
The behaviour of the restriction operator can be a disruptive element in the
proofs. It can interact with the distinguishing valuations and remove actions or
change the properties of crucial elements that were assumed to be present. To
show more clearly how this disruption is handled in the proofs of the proposed
equational bases in this thesis, we will work towards a fragment of CCS with
full parallelism and restriction in three incremental steps.
These incremental steps are organised in this thesis as follows. First, we present
basic theoretical elements used throughout the thesis in Chapter 2, such as
terms, semantics, process algebras and equational theories. In Chapter 3 we in-
troduce the basic fragment of CCS that is used as a general basis in this thesis
and formulate the first equational base for the case without parallelism. At the
end of the chapter we prove the completeness of this base. Chapter 4 adds par-
allelism to the algebra fragment using the left merge and communication merge
from ACP, though still without communication. A new (extended) base is for-
mulated and proved sound and complete. The same base is slightly modified in
the next chapter, Chapter 5, where the addition of communication is discussed.
We are not yet able to present a completeness proof for the proposed equa-
tional base. Instead, we discuss the difficulties that arise while trying to prove
the completeness of the base. Finally, this thesis ends with some concluding
remarks in Chapter 6.



Chapter 2

Preliminaries

This chapter introduces the basic theoretical elements on which the rest of the
thesis is based. It defines everything from the ground up, so that the thesis is
self-contained and requires little prior knowledge except for basic mathematical
notions.
In the first section of this chapter we consider the complete CCS process algebra
with all the functionality of restriction, prefixing, alternative and parallel com-
position. Most of the definitions are taken from [2] and [12]. In Section 2.2 and
Section 2.3 we introduce a basic fragment of CCS called BCCSP+Res. Both
sections are partly based on [1].
This chapter uses the algebras as an illustration for the introduced concepts.
The next chapter will use the fragment BCCSP+Res on which the chapters
thereafter will extend until the full feature set of CCS is regained.

2.1 Open and Closed Terms

We fix a (finite) set of action labels L and a set of co-action labels L, disjoint
from L and in bijection with it. The bijection · is given as follows: for each
a ∈ L there is an a ∈ L and a = a. We define the set of actions A as L ∪ L.
For CCS the synchronous communication action is the internal or silent action
labelled with τ . We define the complete set of actions Aτ as A∪{τ}. We also fix
a countably infinite set of variables V. The meta-variables a, b, and c generally
range over A; x and y range over V. The set of terms T is generated by the
following grammar:

T ::= 0 | x | a.T | T + T | T ‖ T | T \H

where a ∈ Aτ , x ∈ V, and H ⊆ L. We use the convention that the prefixing
a. binds the strongest, then restriction \H, then parallel composition1 ‖, and
finally alternative composition +.
Members of T are called process terms and the meta-variables p, q and r gener-
ally range over T . Process terms that do not contain any variables (i.e. elements
of V) are called closed. The set of closed process terms is denoted by T 0.

1In CCS parallel composition is denoted by |. However, since we want to use this notation
for the communication merge introduced later, we will denote parallel composition with ‖.
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Example 2.1. Examples of closed terms are a.0, a.(b.0 + c.0), a.b.0 + b.c.0,
and (a.0+b.0)\{a}. Examples of open terms are a.(x\{a})+a.0 and a.x+b.y.
Note that a.x \H ‖ p + q should be interpreted according to the priority con-
vention as (((a.x) \H) ‖ p) + q.

Proving properties of closed terms is easier than properties of open terms. Open
terms contain variables which consequently have an unknown behaviour. If a
property has been proved for an open term, it means that it has been proved
for all possible closed instantiations of this open term. Herein obviously lies the
difficulty of dealing with open terms.

Operational semantics

To give the terms some meaning in the context of process algebras, we define
the semantics of the terms using a transition system.
On the set of closed terms T 0, we define the binary relation a−→ (a ∈ Aτ ). This
relation is defined using a transition system of which the steps are given using
operational semantics. Table 2.1 contains the operational rules in de Simone’s
format [8] with p, q ∈ T 0, a ∈ Aτ , and H ⊆ L.

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

4
p

a−→ p′ a, a 6∈ H
p \H a−→ p′ \H

5
p

a−→ p′

p ‖ q a−→ p′ ‖ q
6

q
a−→ q′

p ‖ q a−→ p ‖ q′
7
p

a−→ p′ q
a−→ q′

p ‖ q τ−→ p′ ‖ q′

Table 2.1: The operational semantics of CCS

If a process term p′ exists such that p a−→ p′, then we call p′ the residual of p.
When for a term p no such p′ exists that p a−→ p′, we write p 6 a−→.

Parallelism

The operational semantic rules 5–7 deal with parallelism. Rule 5 and 6 model
interleaving of actions. If a process p can perform an action, it may do so and
the resulting process will be in parallel with q again. The same holds for process
q with respect to p. Rule 7 models the so-called CCS-style communication. If p
can perform some action a and q can perform the corresponding co-action a, then
a communication can happen resulting in the silent action τ being performed
and the resulting processes being in parallel again.

Example 2.2. Consider the following sender-receiver example where we model
a process of two units working together to receive and then send a certain data
item.
For an element d of some finite data set D we have the receiver process r =∑
d∈D recv(d).comm(d).0 and the sender process s =

∑
d∈D comm(d).send(d).0.

If we put the sender and receiver in parallel, r ‖ s, the process can perform the
following action sequence:

r ‖ s recv(d)−→ comm(d).0 ‖ s τ−→ 0 ‖ send(d).0
send(d)−→ 0 ‖ 0.
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But also other actions are possible, such as comm(d).0 ‖ s comm(d)−→ comm(d).0 ‖

send(d).0 or r ‖ s comm(d)−→ r ‖ send(d).0, etc. The model can perform send,
receive and communication actions in a seemingly arbitrary order and it is
obvious that this is not what we wanted as a model for a clean sender-receiver.
So, we need more.

Restriction

The operational semantics rule 4 reveals the functionality of the restriction
operator \H for some H ⊆ L: if a process p can perform some given action,
then p under restriction of the action labels H can only perform this action if
the action or its co-action is not a member of H.
So, this operator is useful in modelling when one wants to prevent a certain
action to happen. This is especially the case for enforcing synchronous commu-
nication of two processes when it is also possible for them to each perform an
action separately. These separate actions are put under restriction and only the
communication can happen.

Example 2.3. We modify our sender-receiver model from Example 2.2 by
putting the communication actions under restriction as follows: (r ‖ q) \ H
with H = {comm(d) | d ∈ D}. Then only the following action sequence is
allowed:

(r ‖ s)\H recv(d)−→ (comm(d).0 ‖ s)\H τ−→ (0 ‖ send(d).0)\H send(d)−→ (0 ‖ 0)\H.

Using restriction communication was enforced and our sender-receiver process
model behaved as expected. See also Chapter 5 for more about communication
and restriction.

Process term properties

To be able to use induction on process terms, we introduce the notion of length.
For other induction purposes we also introduce the notion of number of symbols
of a process term. Besides for induction purposes, the length shall be used in
the following chapters to distinguish different kinds of term structures.

Definition 2.4. For the process term p ∈ T we define the length |p| using the
operational semantics (see Table 2.1) as the maximum number of actions it can
perform:

|p| = max{n | ∃p1,...,pn∈T s.t. p a1−→ p1
a2−→ . . .

an−→ pn}.

Note. The operational semantics may be used for open terms, in which case
process variables will not be able to perform any actions and thus have a length
of 0.

For a process term p ∈ T we define the number of symbols LpM using the structure
of p as follows:

L0M = 1, Lq + rM = 1 + LqM + LrM,
LxM = 1, Lq \HM = 1 + LqM,
La.qM = 1 + LqM, Lp ‖ qM = 1 + LqM + LrM.
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2.2 Process Algebras

An algebra is a structure that consists of a set of elements closed under one or
more operations, often combined with a set of laws, called axioms, that allow
the elements to be analysed or manipulated. The operations of the algebraic
structure are given by a signature. This is a set of operations combined with a
function that assigns the arity to each operation symbol.

In this section we define a process algebra, BCCSP+Res2, which is a fragment
of CCS discussed in the previous section that discards any form of parallelism.
Process algebras are geared towards describing processes and systems, using
the axioms to manipulate these descriptions with equational reasoning (see Sec-
tion 2.3).

For P we shall use a subset of the terms T called P that does not include the
parallel composition operator. The terms of P are generated by the following
grammar:

P ::= 0 | x | a.P | P + P | P \H

where a ∈ A, x ∈ V, and H ⊆ A. Note that for P we do not consider the
internal action τ , because it is irrelevant until communication is added. Also,
the restriction set H is a subset of A whereas it is L for CCS. All previously
given definitions for T also hold for P.

Now, we shall introduce an equivalence relation on the closed terms P0 to obtain
the universe of the process algebra. Then we shall define the signature.

Bisimulation

The operational semantics give the behaviour of the closed terms. To be able
to show that two terms have equal behaviour we introduce the notion of bisim-
ulation on the closed terms (similarly to the definition given in [15]).

Definition 2.5. A bisimulation is a symmetric binary relation R on P0 such
that p R q implies

if p a−→ p′, then a q′ ∈ P0 exists such that q a−→ q′ and p′ R q′.

Closed process terms p, q ∈ P0 are said to be bisimilar (notation: p ↔ q) if a
bisimulation relation R exists such that p R q.

The relation↔ is an equivalence relation and thus partitions P0 into equivalence
classes. For p ∈ P0 we define its equivalence class, denoted by [p], as:

[p] = {q ∈ P0 : p↔ q}.

Example 2.6. Bisimulation allows us make the distinction between the equiva-
lence classes [a.(b.0+ c.0)] and [a.b.0+ a.c.0], because a.(b.0+c.0) a−→ b.0+c.0
but a.b.0 + a.c.0 a−→ b.0 and a.b.0 + a.c.0 a−→ c.0. Hence, a.(b.0 + c.0) 6↔
a.b.0 + a.c.0.

2For simplicity the basic algebra of this thesis is denoted by P. Future extensions of the
algebra shall add a letter in subscript to indicate which extension is meant.
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Definition 2.7. The algebra P is based on the equivalence classes obtained
by dividing ↔ on P0 (notation: P0/↔) and has the constant 0, the unary
operators a. (for all a ∈ A), the unary operators \H (for all H ⊆ L), and the
binary operator +. These operators are defined as follows:

0 = [0], [p] \H = [p \H],
a.[p] = [a.p], [p] + [q] = [p+ q].

Members of P are called processes and will be ranged over by p, q and r like
process terms. This convention does not give rise to any confusion because it
will be clear from the context which set is meant.

The binary relations a−→ (a ∈ A) defined earlier for P0 also induce binary
relations on P. We denote these as a−→ too. For all p, p′ ∈ P0 we define that
[p] a−→ [p′] iff for all q ∈ [p] there exists a q′ ∈ [p′] that q a−→ q′.
This definition allows us to lift the operational semantics of P (rules 1–4 from
Table 2.1) to the process algebra level.

Proposition 2.8. For all p, q, r ∈ P and a, b ∈ A

1. p 6 a−→ iff no p′ ∈ P exists such that p a−→ p′;

2. a.p b−→ r iff a = b and p = r;

3. p+ q
a−→ r iff p

a−→ r or q a−→ r;

4. p \H a−→ q \H iff p
a−→ q and a, a 6∈ H.

Because bisimulation preserves the notion of length, all process members of an
equivalence classes have the same length and therefore Definition 2.4 also holds
for any process p ∈ P. Besides the length, we also need the notion of branching
degree to distinguish certain kinds of term structures.

Definition 2.9. Based on the operational semantics, we define the for p ∈ P
the branching degree 〈|p|〉 as:

〈|p|〉 = |{(a, p′) | p a−→ p′}|.

Note. Because the branching degree definition operates modulo bisimulation the
branching degree of both the processes a.0 + a.(0 + 0) and a.0 is 1.

2.3 Equational Theory

Now that we have an equivalence based on classes of processes, we can move on
to the notion of equation and derivability. However, we need more definitions
first.

Definition 2.10. A valuation is a mapping ν : V → P. Such a mapping may
be applied on process terms of P using an evaluation mapping [[·]]ν : P → P.
We can define the mapping inductively by:

[[0]]ν = 0, [[q + r]]ν = [[q]]ν+ [[r]]ν ,
[[x]]ν = ν(x), [[q \H]]ν = [[q]]ν \H,
[[a.q]]ν = a.[[q]]ν .
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Note. The evaluation mappings map process terms to members of the algebra
P, which are equivalence classes of closed terms. When an evaluation mapping
is applied to a closed process term, it can be omitted, e.g. [[a.0 + b.0]]ν can just
as well be written as a.0 + b.0.

Note. An equivalence class can be described by one of its closed term members.
Therefore, from here on we will make no distinction between a closed term and
its equivalence class.

Process equations
To be able to reason syntactically about equality in P it is convenient to have
a set of process equations. We write a process equation as a pair of process
terms: p ≈ q. The equation p ≈ q is called valid if [[p]]ν = [[q]]ν for all valuations
ν : V → P. The notion of a process equation p ≈ q being valid will later be
denoted by p↔ q. This effectively extends the usage of the operator ↔ to also
encompass open process terms besides the closed process terms as defined in
Definition 2.10.

Equational base
Axioms are process equations chosen to function as the most basic equations to
reason from. Table 2.2 contains such a set of axioms.
Note that the axioms A1–A4 are considered to be the most basic axioms, shared
between all process algebras. The axioms in Table 2.2 are not the complete
equational base that we shall use for P. Refer to the next chapter for the
complete base.

(A1) x+ y ≈ y + x
(A2) (x+ y) + z≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

Table 2.2: Basic subset of the axioms of P

An equational base of an algebra is a set of valid equations from which all other
valid equations can be derived. Put differently, an equational base is a complete
axiomatisation. Valid process equations can be derived from each other using
the common inference rules of equational logic [6] and axioms. Table 2.3 contains
these common inference rules for p, q ∈ P, a ∈ A, H ⊆ A, and σ : V → P.
Here, we silently assume that x[σ] = σ(x) and that .[σ] distributes over all the
operators in the term to which it is applied. We call E1–E3 the equivalence
rules, CG1-CG3 the congruence rules, and S1 the substitution rule.

(E1) p ≈ p (E2)
p ≈ q
q ≈ p (E3)

p ≈ q q ≈ r
p ≈ r

(CG1)
p ≈ q

a.p ≈ a.q (CG2)
p ≈ p′ q ≈ q′

p+ q ≈ p′ + q′
(CG3)

p ≈ q
p \H ≈ q \H

(S1)
p ≈ q

p[σ] ≈ q[σ]

Table 2.3: Common inference rules of equational logic
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When a base contains a finite number of axioms, the base is called finite. All
bases presented in this paper are finite as long as L is finite. The complete set
of all valid process equations derivable from the base is called the equational
theory.
We can show that a set of axioms is an equational base by proving the soundness
and completeness of the axioms.

Soundness

To verify that the axioms do not allow us to make a derivation that does not
comply with the behaviour of the transition system, we have to prove that the
equational base is sound. Soundness means that for every p, q ∈ P we have that
if an equation p ≈ q is derivable, then that p↔ q. To show soundness it suffices
to show soundness for each of the axioms of the algebra. For the axioms that
are well-known, we shall not prove their soundness in this thesis.

Completeness

An equational base is a complete axiomatisation. So, the base also has to
make sure that if two processes have equal behaviour, i.e. they are bisimilar,
then this has to be syntactically derivable. More formally, completeness means
that for every p, q ∈ P, p ≈ q is implied by p ↔ q. As mentioned before
in the introduction, there are several strategies that we can follow for proving
completeness. We shall use the following strategy:

1. Prove that all terms of P are rewritable to certain normal forms using the
axioms.

2. Prove that if normal forms s, t are not bisimilar, then [[s]]∗ 6= [[t]]∗ holds for
some special valuation ∗.





Chapter 3

Basic Equational Base with
Restriction

This chapter discusses the base of the basic process algebra P, introduced in the
previous chapter (Section 2.2). In this chapter we aim to explore the effect that
restriction has on normal forms, soundness, and completeness proofs without
considering any form of parallelism. Because we do not consider parallelism,
in particular no communication, we also will not consider the existence of the
internal action τ .
The basic operational rules for the set of closed terms P are given in Table 3.1
with p, q ∈ P0, a ∈ A, and H ⊆ A.

1
a.p

a−→ p
2

p
a−→ p′

p+ q
a−→ p′

3
q

a−→ q′

p+ q
a−→ q′

4
p

a−→ p′ a 6∈ H
p \H a−→ p′ \H

Table 3.1: The operational semantics with restriction

Table 3.2 contains a proposed equational base for P. It has the basic axioms
A1–A4, but also additional axioms that deal with restriction.
To remove multiple occurrences of the same variable, it would be useful to have
the following axiom:

(DX4) x \H + x \ J ≈ x \ (H ∩ J).

However, it is not sound, as the following example shows.

Example 3.1. Instantiate x with a.b.0, and choose H = {a}, J = {b}. Then,
x \ H + x \ J = a.b.0 \ {a} + a.b.0 \ {b} ≈ a.0. However, x \ (H ∩ J) =
a.b.0 \ ({a} ∩ {b}) ≈ a.b.0. Obviously, a.0 6↔ a.b.0.

3.1 Normal Forms

If it can be shown that all terms p ∈ P have a normal form, we can start the
completeness proof assuming normal forms only. The normal forms are defined
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(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

(D1) 0 \H ≈ 0
(D2) a.x \H ≈ 0 if a ∈ H
(D3) a.x \H ≈ a.(x \H) otherwise
(D4) (x+ y) \H ≈ x \H + y \H

(DX1) x \ ∅ ≈ x
(DX2) x \ A ≈ 0
(DX3) (x \H) \ J ≈ x \ (H ∪ J)

Table 3.2: The axioms of P

as the set Pnf . Its elements are generated by the following grammar:

N ::= 0 | a.N | N + N | x \H

where a ∈ A, x ∈ V, and H ⊂ A. We designate the normal forms a.N and x\H
as simple normal forms. If these simple normal forms occur in a summation,
we also call them summands.

For the normal form summands x \ H, we shall not consider the case where
H = A since x \ A ≈ 0 (by DX2). We do allow H = ∅ for conveniently writing
a variable x as a term with an empty restriction x \ ∅ (allowed by DX1).

Note. The normal forms can be considered as the result of repeatedly applying
the axioms D1–D4 to the process terms. This results in only variables being
restricted. Therefore, normal forms are considered to be unique modulo A1, A2
and A4, i.e. except for duplicate summands.

To be able to prove that every process term has a certain normal form we use
the following lemma:

Lemma 3.2. For every normal form s ∈ Pnf and H ⊆ A a normal form
s′ ∈ Pnf exists such that s′ ≈ s \H.

Proof. This can be shown by induction on the structure of s.

1. If s = 0, then s \H = 0 \H ≈ 0 by D1, and 0 ∈ Pnf .

2. If s = a.t, then we have two sub-cases. If a ∈ H, then s \H = a.t \H ≈ 0
by D2 and 0 ∈ Pnf . If a 6∈ H, then s \ H ≈ a.t \ H ≈ a.(t \ H) by
D3. Knowing that t ∈ Pnf because of the structural definition of normal
forms, we also know a t′ ∈ Pnf exists such that t′ ≈ t \ H by induction
hypothesis, so s \H ≈ a.t′ and a.t′ ∈ Pnf .

3. If s = t + u, with t, u ∈ Pnf , then we have by the induction hypothesis
that t′, u′ ∈ Pnf such that t′ ≈ t \ H and u′ ≈ u \ H. This means that
s \H ≈ (t \H) + (u \H) ≈ t′ + u′ by D4 and (t′ + u′) ∈ Pnf .
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4. If s is a variable under restriction, say s = x\J , then s\H = (x\J)\H ≈
x \ (H ∪ J) by DX3 and x \ (H ∪ J) ∈ Pnf .

Lemma 3.3. Every process term p ∈ P has a normal form s ∈ Pnf such that
p ≈ s.

Proof. This can be shown by induction on the structure of p.

1. If p = 0, then p is a normal form since 0 ∈ Pnf .

2. If p is a variable, say p = x, then p ≈ x \ ∅ by D1 and (x \ ∅) ∈ Pnf .

3. If p = a.q, we know by induction hypothesis that q has a normal form
t ∈ Pnf such that q ≈ t. This means that p ≈ a.t and a.t ∈ Pnf .

4. If p = q + r, we know by induction hypothesis that q and r have normal
forms t and u such that q ≈ t and r ≈ u. So, p ≈ t+ u and (t+ u) ∈ Pnf .

5. If p = q \H, we know that a t ∈ Pnf exists such that q ≈ t. Lemma 3.2
gives us that if t ∈ Pnf then a s ∈ Pnf exists such that s ≈ t \H. Then
p ≈ t \H ≈ s and s ∈ Pnf .

Lemma 3.4. If s ∈ Pnf , then it can be written using the following general form
(modulo A1, A2 and A4):

s =
∑
i∈I

ai.si +
∑
j∈K

xj \Hj and si ∈ Pnf

with ai ∈ A, xj ∈ V and Hj ⊂ A.

Proof. The associativity and commutativity of + (by A1 and A2) allows us to
use

∑
. Using the agreement that for an empty index set we write

∑
i∈∅ s = 0

gives us a notation for 0 that fits the format. Finally, 0-summands can be
removed by A4.

Because of Lemma 3.3, it suffices to prove completeness by showing that s ↔ t⇒
s ≈ t for all normal forms s and t.

3.2 Soundness and Completeness

Since the axioms A1–A4 and D1–D4 are well-known (see [7] or [10]), we shall
not prove soundness of the axioms here.

Proposition 3.5 (Soundness). For all process terms p, q ∈ P, if p ≈ q, then
p ↔ q.

Note. The soundness of the extra axioms DX1–DX3 (also known from [12])
can be understood intuitively by looking at operational semantic rule 4 from
Table 3.1. Concerning DX1, all possible actions that p may perform, can still
be performed. For DX2 no actions can be performed, and concerning DX3 only
the actions can be performed that are both not in H and not in J .
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To be able to prove completeness, we first need a valuation that is able to
distinguish action prefixes from variables. We also have to make sure that after
restriction is applied, this distinction is still detectable.

Definition 3.6. We define the valuation ∗m by assigning a uniquely identifiable
process for each variable x ∈ V:

∗m(x) =
∑
a∈A

a.ψdxe·m with ψi =
∑
a∈A

ai.0

with m ≥ 1 and some injective function d·e : V → (N− {0}).

Initially, ∗m(x) was defined as ψdxe·m+1. However, this resulted in the normal
forms x and x\{a}+x\{b} being indistinguishable, because (aj .0+bj .0)\ {a}+
(aj .0 + bj .0) \ {b} ≈ aj .0 + bj .0 by A3. Defining ∗m as a summation of all
a ∈ A prefixing ψdxe·m solved this issue. Because H 6= A, it is always possible
to perform an action and the residual will have the following distinguishing
properties:
If m is chosen high enough, i.e. equal or greater than the maximum prefix length
|·| that can be found in the process term, the difference between an action prefix
term and a variable can be detected. This valuation makes it also possible to
detect which variable was substituted because, using the injective function d·e,
the valuation assigns different multiples of prefix length m for each separate
variable. It is also possible to detect which restriction was applied by looking
at the subset of actions that the residual of a variable can take.
When the valuation ∗m is applied to a simple normal form such as x \H, the
residual of the process after performing any action is always unique, namely
ψdxe·m \H.

Example 3.7. Consider a set of action labels L = {a, b}, a set of variables
V = {x} and a process term: t = a.a.0 + x \ {b}. We choose m = |t| = 2 and
assume dxe = 1. Then ∗m is defined as:

∗m(x) = a.ψ2 + b.ψ2 = a.(a.a.0 + b.b.0) + b.(a.a.0 + b.b.0).

If we examine [[t]]∗m = a.a.0 +a.a.a.0, then we still can see which summand was
the closed term and which summand was the variable considering the length of
both summands.
Given the same set of actions, set of variables and value of m, we can also show
that the valuation ∗m can show the difference between the term x\{a}+x\{b}
and x \ ∅:

[[x \ {a}+ x \ {b}]]∗m = b.b.b.0 + a.a.a.0,

[[x \ ∅]]∗m = a.(a.a.0 + b.b.0) + b.(a.a.0 + b.b.0).

Note that the difference of behaviour of the two processes is visible after per-
forming the first action. The latter process offers a choice after the first action
whereas the first process doesn’t.

Lemma 3.8. Let s, s′ ∈ Pnf be simple normal forms, x ∈ V, H ⊂ A and let
m ≥ |s|. If s = x \H, then the unique residual of [[s]]∗m has a length larger than
0 and divisible by m, whereas if s = a.s′, then the unique residual of [[s]]∗m has
a length 0 or a length not divisible by m.
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Proof. Assume that p is the residual of s: [[s]]∗m
a−→ p for some a ∈ A. Then by

case analysis:

1. If s = x \ H, then according to the definition of ∗m (see Definition 3.6)
p = ψdxe·m, so |p| = dxe ·m and hence |p| is divisible by m.

2. If s = a.s′, then p = [[s′]]∗m. We can distinguish the following two sub-
cases: either s′ does not contain a process variable, then 0 ≤ |p| < m, or
s′ does contain a process variable. In the latter sub-case we consider for
the length of p specifically the variable x ∈ V in p for which dxe yields
the largest value. Then, by the definition of ∗m (see Definition 3.6) the
length |p| ≥ dxe ·m+ 1, so |p| > dxe ·m and also |p| ≤ dxe ·m+ (|s|− 1) ≤
dxe ·m+ (m− 1) < (dxe+ 1) ·m. So, in both cases |p| is not divisible by
m.

Theorem 3.9 (Completeness). For every two normal forms s, t ∈ Pnf with
m > |s| and m > |t|, it holds that if [[s]]∗m = [[t]]∗m, then s ≈ t modulo A1–A4.

Proof. Using Lemma 3.4, we know that the normal forms s and t are summations
of terms of the form a.s′ or x \ H. We now prove that s ≈ t assuming that
[[s]]∗m = [[t]]∗m by induction on the sum of the lengths of s and t. We do this
by proving that for every summand si of s a summand tj of t exists such that
si ≈ tj modulo A1–A4. Consider the following case analysis based on the syntax
of an arbitrary summand si of s:

1. If si = a.s′i, then [[si]]∗m
a−→ [[s′i]]∗m. Because [[s]]∗m = [[t]]∗m there must also

be a tj in t such that [[tj ]]∗m
a−→ [[s′i]]∗m.

It cannot be that tj has the simple normal form x \ H (with x ∈ V and
a 6∈ H), since by Lemma 3.8 we know that in this case the length residual
will differ from the length from [[s′i]]∗m. This means that tj must have the
form b.t′j .

Given that tj has this form, it can perform only one action, namely

[[tj ]]∗m
b−→ [[t′j ]]∗m. Hence, from [[tj ]]∗m

a−→ [[s′i]]∗m it follows that a = b
and [[s′i]]∗m = [[t′j ]]∗m. By induction hypothesis we know that s′i ≈ t′j mod-
ulo A1–A4. Hence, we may conclude that si = a.s′i ≈ b.t′j = tj .

2. If si = x \H, then, since H ⊂ A, [[si]]∗m
a−→ p for some a ∈ A −H. By

a similar reasoning as in the previous action we know that there also is a
tj in t such that [[tj ]]∗m

a−→ p. By Lemma 3.8 we know that tj must have
the form y \J for some y ∈ V and J ⊂ A. We proceed to show that x = y
and H = J .

Because of the definition of ∗m (see Definition 3.6), we know that p =
ψdxe·m \ H ≈

∑
a∈A−H a

dxe·m.0 by D1–D4 and the residual of y \ J is
ψdye·m \H. From this observation it follows by soundness that∑

a∈A−H
adxe·m.0 = ψdxe·m \H = p = ψdye·m \ J =

∑
a∈A−J

adye·m.0 .

Hence, dxe·m = |p| = dye·m, so x = y since d·e is an injection and H = J .

Now it has been established that x = y and H = J ; we may conclude that
si = x \H = y \ J = tj .
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The case analysis shows that for every summand si of s a summand tj of t exists
such that si ≈ tj modulo A1–A4. It follows by a symmetric argument that every
summand of t is also provably equal to a summand of s. Hence s ≈ s + t ≈ t
modulo A1–A4.

Corollary 3.10. For all process terms p, q ∈ P it holds that p ≈ q if and only
if p ↔ q.

Proof. The implication from the left to the right follows from Proposition 3.5.
For the proof for the implication from the right to the left, we assume that
p↔ q. For p and q two normal forms s and t exist respectively such that p ≈ s
and q ≈ t by Lemma 3.3. If p ↔ q then by Proposition 3.5 we also know that
s ↔ t and thus [[s]]∗m = [[t]]∗m. Hence, by Theorem 3.9 we know that s ≈ t and
we can conclude that p ≈ s ≈ t ≈ q.



Chapter 4

Equational Base with
Interleaving and Restriction

In this chapter we extend the fragment of the previous chapter with parallelism.
However, communication is postponed until the next chapter. First, we will
consider interleaving of actions without communication.
Note. CCS has only one operator for parallelism. In [14], Moller shows that
we need at least one auxiliary operator to get a finite, complete set of axioms.
Although this is only shown for the case without restriction, it is probable that
the same holds for the case with restriction. Therefore we define parallelism by
introducing the ‖, T and | operators of ACP [5] to make a finite, complete set
possible.

We proceed by introducing extensions adding parallelism to the grammar of
the original process term set P, set of normal forms Pnf , and algebra P called
respectively PF , Pnf

F and PF .
The process terms of PF are generated by the following grammar:

P ::= 0 | x | a.P | P + P | P \H | P T P | P | P | P ‖ P

where a ∈ A, x ∈ V, and H ⊆ A.
Table 4.1 contains an extension of the operational semantics given in Table 3.1
that adds parallelism in a purely interleaving fashion.

5
p

a−→ p′

p T q a−→ p′ ‖ q
6

p
a−→ p′

p ‖ q a−→ p′ ‖ q
7

q
a−→ q′

p ‖ q a−→ p ‖ q′

Table 4.1: The operational semantics extension with interleaving

Definition 4.1. The algebra PF extends the algebra P (see Definition 2.7) and
is based on the equivalence classes obtained by dividing ↔ on P0

F . It adds the
following operators:

[p] T [q] = [p T q], [p] | [q] = [p | q],
[p] ‖ [q] = [p ‖ q].
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Now that the operational semantics is extended, we can lift the extension to the
process algebra level by extending Proposition 2.8 as follows:

Proposition 4.2. For all p, q, r ∈ PF and a, b ∈ A

5. p T q a−→ r iff there exists p′ ∈ PF such that p a−→ p′ and r = p′ ‖ q;

6. p ‖ q a−→ r iff p T q a−→ r or q T p a−→ r.

Table 4.2 contains an extension of the axiom schemata given in Table 3.2 for P
that adds parallelism, called PF . Refer to Appendix A.2 for the full equational
base. The resulting equational base is finite if L is finite.

(L1) 0 T x ≈ 0
(L2) a.x T y ≈ a.(x ‖ y)
(L3) (x+ y) T z ≈ x T z + y T z
(L4) (x T y) T z ≈ x T (y ‖ z)
(L5) x T 0 ≈ x

(D5) (x T y) \H ≈ x \H T y \H

(M) x ‖ y ≈ x T y + y T x+ x | y

(F) x | y ≈ 0

Table 4.2: The axiom extension for PF

The new grammar leads to an extension of the definition of the number of
symbols of a process term. The definition of length and branching degree will
remain the same, since these were defined on the semantics of the process term.

Definition 4.3. We define the number of symbols of a process term p ∈ PF by
extending Definition 2.4 with the following rules:

Lq T rM = 1 + LqM + LrM, Lq ‖ rM = 1 + LqM + LrM,
Lq | rM = 1 + LqM + LrM.

4.1 Normal Forms

The normal forms of Pnf
F are generated by the following grammar:

N ::= 0 | a.N | N + N | (x \H) T N

where a ∈ A, x, y ∈ V and H ⊂ A.

The normal forms are similar to the normal forms of Pnf . The rule N ::= x \H
got replaced by N ::= (x \H) T N. Therefore we also call (x \H) T N a simple
normal form.

Lemma 4.4. For every normal form s ∈ Pnf
F and H ⊆ A a normal form

s′ ∈ Pnf
F exists such that s′ ≈ s \H.
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Proof. This can be shown by induction on the structure of s. We adapt Lemma 3.2
by replacing case 4 with:

4. If s = (x\J) T t with t ∈ Pnf
F , then s\H = ((x\J) T t)\H ≈ ((x\J)\H) T

t\H by D5. By induction hypothesis a t′ ∈ PF exists such that t′ ≈ t\H.
Hence, by DX3 we have that ((x \ J) \H) T t \H ≈ (x \ J ∪H) T t′ and
(x \ J ∪H) T t′ ∈ Pnf

F .

We introduce the following lemma, similar to the previous lemma, to simplify
the normal form proof.

Lemma 4.5. For all normal forms s, t ∈ Pnf
F a normal form u ∈ Pnf

F exists
such that u ≈ s T t.

Proof. This can be shown by induction on the number of symbols in s and t,
LsM + LtM. We distinguish cases according to the syntactic form of s.

1. If s = 0, then s T t = 0 T t ≈ 0 by L1 and 0 ∈ Pnf
F .

2. If s = a.s′, then s T t = a.s′ T t ≈ a.(s′ ‖ t) ≈ a.(s′ T t + t T s′) by
L2, M and F. Since Ls′ T tM < Ls T tM and Lt T s′M < Ls T tM, we know by
the induction hypothesis that two normal forms u′, u′′ ∈ Pnf

F exist such
that u′ ≈ s′ T t and u′′ ≈ t T s′. Hence, s T t ≈ a.(u′ + u′′) and since
(u′ + u′′) ∈ Pnf

F , also a.(u′ + u′′) ∈ Pnf
F .

3. If s = s′ + s′′, then s T t = (s′ + s′′) T t ≈ s′ T t + s′′ T t by L3. Since
Ls′ T tM < Ls T tM and Ls′′ T tM < Ls T tM, we have by the induction
hypothesis that two normal forms u′, u′′ ∈ Pnf

F exist such that u′ = s′ T t
and u′′ = s′′ T t. Hence, s T t ≈ u′ + u′′ and (u′ + u′′) ∈ Pnf

F .

4. If s = (x\H) T s′, then s T t = ((x\H) T s′) T t ≈ (x\H) T (s′ T t+t T s′)
by L4, M and F. Similarly to the previous case, we have two normal forms
u′, u′′ ∈ Pnf

F , so that s T t = (x \H) T (u′ + u′′). Since, (u′ + u′′) ∈ Pnf
F ,

also (x \H) T (u′ + u′′) ∈ Pnf
F .

To prove that every process term has a normal form, we extend Lemma 3.3 to
suit the new forms that some p ∈ PF can take.

Lemma 4.6. Every process term p ∈ PF has a normal form s ∈ Pnf
F such that

p ≈ s.

Proof. This can be shown by induction on the structure of p. We adapt Lemma 3.3
by replacing case 5 with:

5. If p = q\H, then we know that a t ∈ Pnf
F exists such that q ≈ t. Lemma 4.4

gives us that if t ∈ Pnf
F , then a s ∈ Pnf

F exists such that s ≈ t \H. Then,
p ≈ t \H ≈ s and s ∈ Pnf

F .

Then, we add the following cases to supplement the case analysis already per-
formed in Lemma 3.3:
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6. If p = q T r, then we know by the induction hypothesis that there are
two normal forms t, u ∈ Pnf

F such that respectively q ≈ t and r ≈ u.
Therefore, by Lemma 4.5, we have that a normal form s ∈ Pnf

F exists such
that s ≈ t T u. Hence, p ≈ t T u ≈ s and s ∈ Pnf

F .

7. If p = q | r, then p ≈ 0 by F and 0 ∈ Pnf
F .

8. If p = q ‖ r, we have by M, F and A4 that p ≈ q T r + r T q. Similarly
as in case 6 we know that there must be two normal forms s, t ∈ Pnf

F

such that respectively s ≈ q T r and t ≈ r T q. Hence, p ≈ s + t and
(s+ t) ∈ Pnf

F .

Lemma 4.7. If s ∈ Pnf
F , then it can be written in the following general form

(modulo A1, A2 and A4):

s =
∑
i∈I

ai.si +
∑
j∈K

(xj \Hj) T sj and si, sj ∈ Pnf
F

with ai ∈ A, xj ∈ V and Hj ⊂ A.

Proof. This lemma is an adaptation of Lemma 3.4 where xj \Hj is now replaced
by (xj \Hj) T sj .

4.2 Soundness and Completeness

Proposition 4.8 (Soundness). For all process terms p, q ∈ PF , if p ≈ q, then
p ↔ q.

Proof. Since the axioms given in Table 3.2 and L1–L5, M of Table 4.2 and their
soundness is well-known (see [5, 7, 10]), we are only going to show the soundness
of D5 as follows:
We use the following symmetric relation R:

R = {( (p T q) \H, (p \H) T (q \H) ) ,
( (p \H) T (q \H), (p T q) \H ) ,
( (p ‖ q) \H, (p \H) ‖ (q \H) ) ,
( (p \H) ‖ (q \H), (p ‖ q) \H ) | p, q ∈ PF , H ⊆ A}

and show that this is a bisimulation following Definition 2.5 for all p, q ∈ PF
and H ⊂ A:

1. ( (p T q) \H, (p \H) T (q \H) ): Assume that (p T q) \H a−→ r for some
r ∈ PF and a ∈ A. Then, by the semantics given in Table 3.1 this is
possible only by rule 4 when p T q a−→ r′, a 6∈ H, and r = r′ \H for some
r′ ∈ Pnf

F . So, we must have that p T q a−→ r′. Then, by the semantics given
in Table 4.1 this is possible only by rule 5 when p

a−→ p′ and r′ = p′ T q.

But, if p a−→ p′ and a 6∈ H, then p \ H a−→ p′ \ H and also (p \ H) T
(q \H) a−→ (p \H) ‖ (q \H).

Finally, ( (p′ ‖ q) \H, (p \H) ‖ (q \H) ) ∈ R.
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2. ( (p \H) T (q \H), (p T q) \H ): This case is symmetrical with the pre-
vious case.

3. ( (p ‖ q) \H, (p \H) ‖ (q \H) ): We know that (p ‖ q)\H a−→ (p′ ‖ q)\H
if a 6∈ H and p ‖ q a−→ p′ ‖ q or that (p ‖ q)\H a−→ (p ‖ q′)\H if a 6∈ H and
p ‖ q a−→ p ‖ q. This is only possible if p a−→ p′ or if q

q−→
′

respectively.

We only consider the case where p a−→ p′ since the case for q a−→ q′ is
symmetrical: if p a−→ p′ and a 6∈ H, then p\H a−→ p′\H and consequently
(p \H) ‖ (q \H) a−→ (p′ \H) ‖ (q \H).

Finally, we have that ( (p′ ‖ q) \H, (p \H) ‖ (q \H) ) ∈ R.

4. ( (p \H) ‖ (q \H), (p ‖ q) \H ): This case is symmetrical with the pre-
vious case.

Hence, if (p T q) \H ≈ (p \H) T (q \H), then R is a bisimulation relation such
that (p T q) \H ↔R (p \H) T (q \H).

Similarly to the completeness proof for the fragment of CCS without paral-
lelism we need a distinguishing valuation. However, now that parallelism has
been introduced it can no longer be based on the length, since for example the
processes a.0 ‖ a.0 and a.a.0 are bisimilar and thus have the same length but
are syntactically different. Therefore, we introduce a distinguishing valuation
based on branching degree combined with the notion of length.

Definition 4.9. We define the valuation �w by assigning a unique identifiable
process for each variable x ∈ V:

�w(x) =
∑
a∈A

a.ξdxe·w with ξi =
i∑

j=1

ψj

with w ≥ 1 and some injective function d·e : V → (N− {0}).

If w is chosen high enough, i.e. higher than the branching that can occur in the
processes of the parallel decomposition of a term and higher than the cardinality
of the set of actions A, the difference between a left merge term with a variable
and a prefix term can be detected.
To accomplish that, we need to choose w higher than the lower bound of the
branching degree of the processes that have to be distinguished. The evaluation
mapping using �w on a variable results in a process that not immediately has a
distinguishably high branching degree, but it gets a high branching degree after
performing an action.

Definition 4.10. For all s ∈ Pnf
F , the lower bound estimation of the branching

degree 〈|s|〉 is defined inductively as follows:

〈|0|〉 = 0, 〈|s+ t|〉 = 〈|s|〉+ 〈|t|〉,
〈|a.t|〉 = max(1, 〈|t|〉), 〈|(x \H) T t|〉 = max(|A −H|, 〈|t|〉).

with a ∈ A, x ∈ V, H ⊂ A and t ∈ Pnf
F .
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Note. The lower bound |A − H| follows from the definition of �w (see Defini-
tion 4.9), since [[x \H]]�w

a−→ ξdxe·w for all a ∈ A−H.

As for ∗m, it also holds for the valuation �w that when it is applied to a simple
normal form such as (x \ H) T s, the residual of the process after performing
any action is unique. In this case the unique residual is (ξdxe·w \H) ‖ [[s]]�w.

Example 4.11. Consider a set of action labels L = {a, b}, a set of variables
V = {x} with dxe = 1 and a process term t = a.a.a.0 + (x \ {b}) T a.0. Since
〈|t|〉 = 2, we choose w = 3. Then:

�w(x) = a.ξ3 + b.ξ3 = a.(ψ1 + ψ2 + ψ3) + b.(ψ1 + ψ2 + ψ3)
= a.(a.0 + b.0 + a.a.0 + b.b.0 + a.a.a.0 + b.b.b.0)

+ b.(a.0 + b.0 + a.a.0 + b.b.0 + a.a.a.0 + b.b.b.0)

and we have that [[t]]�w = a.a.a.0 + a. ((a.0 + a.a.0 + a.a.a.0) ‖ a.0).
When [[t]]�w performs the action a, we can exactly determine which summand
of [[t]]�w performed that action. If it was the closed term a.a.a.0, then the
branching degree of the residual a.a.0 does not exceed w. If it was the open
term (x \ {b}) T a.0, then the residual (ξ3 \ {b}) ‖ a.0 has a branching degree 3,
which exceeds w.

The following lemma shows that our branching degree estimation is a still a
good estimation when a valuation is applied.

Lemma 4.12. For every normal form s ∈ Pnf
F , if 〈|s|〉 < w, then 〈|[[s]]�w|〉 ≤ w.

Proof. Structural induction on s.

With parallelism in the algebra it is harder to distinguish a prefix normal form
from a normal form starting with a variable. We will work towards distinguish-
ing them based on the branching degree of the elements in a unique parallel
decomposition which is defined below. We will show that the elements of the
composition in the residual of a prefix normal still have a low branching de-
gree, whereas the residual a normal form starting with a variable will contain a
component with a high branching degree.

Definition 4.13. An element p ∈ PF is parallel prime if p 6= 0, and p = q ‖ r
implies q = 0 or r = 0.
A parallel decomposition of p is a finite multiset [p1, . . . , pn] of parallel primes
such that p = p1 ‖ . . . ‖ pn.

Note. The decomposition of the process 0 is the empty multiset, and the de-
composition of a parallel prime process is the singleton multiset [p]1.

Lemma 4.14. Every element of PF has a unique parallel decomposition.

Proof. Please refer to [2, Theorem 11] for the proof. This proof is done for a
fragment of ACP that is similar to our fragment of CCS, PF . All ingredients
necessary to redo the proof at this point are present in this thesis.

1The notation for the equivalence class of p is the same as the singleton multiset containing
the process p.
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Corollary 4.15. Let p, q, r ∈ PF . If p ‖ q = p ‖ r, then q = r.

The following lemmas show some of the properties of an important parallel
prime process ξi \H. This process is a component of the residual of a normal
form that starts with a variable when the valuation �w is used.

Lemma 4.16. For all i ≥ 1 and H ⊂ A, the process ξi \H

1. is parallel prime, and

2. its branching degree is 〈|ξi \H|〉 = i · |A −H|.

Proof. 1. We use an adapted version of [2, Lemma 14(i)]: Clearly ξi \H 6= 0,
given also that H 6= A. Suppose ξi \ H = p ‖ q; to prove that ξi \ H is
parallel prime, we need to establish that either p = 0 or q = 0. Note that
p ‖ q a−→ 0 for some a ∈ A −H. Since p | q ≈ 0 (by F), it follows from
Proposition 4.2 that we can distinguish two cases:

(a) If there exists p′ such that p a−→ p′ with a ∈ A −H and p′ ‖ q = 0,
then it follows by Definition 2.4 that |p′ ‖ q| = 0 and therefore |q| = 0,
hence q = 0.

(b) If there exists q′ such that q a−→ q′ with a ∈ A −H and p ‖ q′ = 0,
then it follows by Definition 2.4 that |p ‖ q′| = 0 and therefore |p| = 0,
hence p = 0.

2. Consider the branching degree using the definition of �w (see Defini-
tion 4.9), ψj (see Definition 3.6), and the axioms D1–D4. We can show
modulo bisimulation that:

〈|ξi \H|〉 =

〈∣∣∣∣∣∣
i∑

j=1

ψj \H

∣∣∣∣∣∣
〉

=

〈∣∣∣∣∣∣
i∑

j=1

∑
a∈A−H

aj .0

∣∣∣∣∣∣
〉

= i · |A −H|.

The above equation may be explained as follows: by Definition 3.6, D2,
and D3, the process ψj \ H can perform all actions except the actions
present in H. By Definition 4.9, ξi \H is actually i times a ψj \H process,
each with different length and therefore not bisimilar with any of the other
i− 1 processes.

So, ξi \ H can perform |A − H| distinct actions and have i bisimilarly
different residuals. Hence, the branching degree of ξi \H is i · |A−H|.

Lemma 4.17. For i, j ≥ 1, H,J ⊂ A, it holds that if the processes p = ξi \H
and q = ξj \ J are equal, then H = J .

Proof. Because of the definition of ξi (see Definition 4.9), we know that p a−→ p′

and therefore q a−→ q′ for all a ∈ A−H.
Assume that a 6∈ H. By Definition 4.9, Proposition 2.8, and D3 we know that
some r ∈ P exists such that ξi \H

a−→ r and therefore ξj \ J
a−→ r. However,

by D3 this also means that a 6∈ J .
The case when assuming that a 6∈ J is symmetrical. Hence, since a 6∈ H iff
a 6∈ J , H = J .
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Lemma 4.18. For all p, q ∈ PF , it holds that 〈|p ‖ q|〉 ≥ 〈|p|〉 and 〈|p ‖ q|〉 ≥ 〈|q|〉.

Proof. We use the proof given in [2, Lemma 13]: First we prove that 〈|p ‖
q|〉 ≥ 〈|q|〉. By Proposition 4.2, if q a−→ q′, then p ‖ q a−→ p ‖ q′. Suppose
that q1 and q2 are distinct processes such that q a−→ q1 and q

a−→ q2. Then
p ‖ q a−→ p ‖ q1 and p ‖ q a−→ p ‖ q2. Since p ‖ q1 = p ‖ q2 implies that
q1 = q2, by Corollary 4.15, it follows that p ‖ q1 and p ‖ q2 are distinct. Hence
〈|p ‖ q|〉 ≥ 〈|q|〉. By commutativity of ‖, it also follows that 〈|p ‖ q|〉 ≥ 〈|p|〉.

Lemma 4.19. Let s, s′ ∈ Pnf
F be simple normal forms, x ∈ V, H ⊂ A and let

w > 〈|s|〉. If s = (x \H) T s′, then the unique residual of [[s]]�w has a branching
degree larger than w, whereas if s = a.s′, then the unique residual of [[s]]�w has
a branching degree smaller than or equal to w.

Proof. Assume that p is the residual of s: [[s]]�w
a−→ p for some a ∈ A. We have

the following residuals:

1. If s = a.s′, then p = [[s′]]�w. Because 〈|s|〉 < w, we know that the branching
degree 〈|s′|〉 ≤ 〈|s|〉 < w by Definition 4.10. Hence, by Lemma 4.12, the
branching degree of [[s′]]�w does not exceed w.

2. If s = (x\H) T s′, then p = (ξdxe·w\H) ‖ [[s′]]�w. We have by Definition 4.9
that 〈|ξdxe·w \H|〉 = dxe ·w · |A−H| ≥ w (given that H ⊂ A and dxe ≥ 1).
Because [[s′]]�w does not decrease the branching degree of the residual (by
Lemma 4.18), we may conclude that the residual has a branching degree
that exceeds w.

Theorem 4.20 (Completeness). For every two normal forms s, t ∈ Pnf
F with

w > 〈|s|〉 and w > 〈|t|〉, it holds that if [[s]]�w = [[t]]�w, then s ≈ t modulo A1–A4.

Proof. By Lemma 4.7, we can assume that the normal forms s and t are sum-
mations of terms of the form a.s′ or (x \ H) T s′. We now prove that s ≈ t
assuming that [[s]]�w = [[t]]�w by induction on the sum of the lengths of s and t.
We do this by proving that for every summand si of s a summand tj of t exists
such that si ≈ tj modulo A1–A4. Consider the following case analysis based on
the syntax of an arbitrary summand si of s:

1. If si = a.s′i, then [[si]]�w
a−→ [[s′i]]�w. Because [[s]]�w = [[t]]�w, there also must

be a tj in t such that [[tj ]]�w
a−→ [[s′i]]�w. By Lemma 4.19 we know that

tj must have the form b.t′j , because the branching degree of the residual
[[t′j ]]�w does not exceed w.

Given that tj has this form, it can only perform one action: [[tj ]]�w
b−→

[[t′j ]]�w. Since also [[tj ]]�w
a−→ [[s′i]]�w if follows that a = b and [[s′i]]�w = [[t′j ]]�w.

By induction hypothesis we have that s′i ≈ t′j modulo A1–A4. Hence, we
may conclude that si = a.s′i ≈ b.t′j = tj .

2. If si = (x \H) T s′i, then, since H ⊂ A, [[si]]�w
a−→ p for some a ∈ A−H.

We know that also a tj in t exists such that [[tj ]]�w
a−→ p. Definition 4.9

gives us that p = (ξdxe·w \H) ‖ [[s′i]]�w. Similarly to the previous case, by
Lemma 4.19 we also know that tj must have the form (y \J) T t′j for some
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y ∈ V and J ⊂ A. The residual of tj after performing an action a ∈ A−J
is (ξdye·w \ J) ‖ [[t′j ]]�w (also by Definition 4.9). This residual is equal to p,
so we know that (ξdxe·w \H) ‖ [[s′i]]�w = (ξdye·w \ J) ‖ [[t′j ]]�w.

By Lemma 4.16 we have that the process ξdxe·w \H is parallel prime and
has a branching degree that exceeds w. This process cannot occur in
the unique parallel decomposition of [[t′j ]]�w (see Definition 4.13) because,
by Lemma 4.18 and the fact that w > 〈|t′j |〉, the branching degrees of all
processes in the decomposition do not exceed w. Conversely, this also
holds in a symmetric way for the process ξdye·w \ J with respect to the
unique parallel decomposition of [[s′i]]�w. Hence, ξdxe·w \ H = ξdye·w \ J
and [[s′i]]�w = [[t′j ]]�w. Therefore, we proceed show that H = J , x = y and
[[s′i]]�w = [[tj ]]�w.

From ξdxe·w \H = ξdye·w \ J it follows by Lemma 4.17 that H = J . Now,
consider the branching degrees of the two processes. From Lemma 4.16 it
follows that

dxe · w · |A −H| = 〈|ξdxe·w \H|〉 = 〈|ξdye·w \ J |〉 = dye · w · |A − J |.

Since d·e is an injection and H = J , it follows that dxe = dye, so x = y.

By the two previous observations that H = J and x = y we have that the
residual of [[tj ]]�w is (ξdxe·w \ H) ‖ [[t′i]]�w. We also know that [[tj ]]�w

a−→
(ξdxe·w \H) ‖ [[s′i]]�w, so it follows by cancellation (see Corollary 4.15) that
[[s′i]]�w = [[t′j ]]�w.

Now it has been established that H = J , x = y, and [[s′i]]�w = [[t′j ]]�w; we
may conclude that si = (x \H) T s′i = (y \ J) T t′j = tj .

The above analysis shows that for each summand si of s a summand tj of t
exists such that si ≈ ti modulo A1–A4. It follows by a symmetric argument
that every summand of t is also provably equal to a summand of s. Hence
s ≈ s+ t ≈ t modulo A1–A4.

Corollary 4.21. For all process terms p, q ∈ PF it holds that p ≈ q if and only
if p ↔ q.





Chapter 5

Restriction and
Communication

We extend the fragment of the previous chapter again. This time we add com-
munication. For CCS the synchronous communication action is the internal or
silent action labelled with τ . We define the complete set of actionsAτ asA∪{τ}.
In CCS communication is defined as follows: if some process can perform some
action a ∈ A and another process in parallel with the first process can perform
the corresponding co-action a, then a synchronous communication occurs re-
sulting in the silent action τ . Note that the resulting action of a communication
τ can never communicate with any other process.
We now introduce extensions of the sets of process terms and the algebra that
adds communication to PF , Pnf

F and PF called respectively PH , Pnf
H and PH .

Although the process terms of PH are the same as PF and thus there is no real
extension, we shall use the PH set notation for clarity.
Table 5.1 contains an extension of the operational semantics reflecting the com-
munication principle.

8
p

a−→ p′ q
a−→ q′

p | q τ−→ p′ ‖ q′
9
p

a−→ p′ q
a−→ q′

p ‖ q τ−→ p′ ‖ q′

Table 5.1: The operational semantics extension with communication

The extended operational semantics leads to an adaptation of Proposition 4.2
so that we can lift the communication behaviour to the algebra level. Note that
we need to replace case 6, now that communication is part of a merge p ‖ q.

Proposition 5.1. For all p, q, r ∈ PH and a ∈ Aτ

6. p ‖ q a−→ r iff p T q a−→ r or q T p a−→ r or p | q a−→ r;

7. p | q a−→ r iff a = τ and there exist an action b ∈ A and processes

p′, q′ ∈ PH such that p b−→ p′, q b−→ q′, and r = p′ ‖ q′.
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Table 5.2 contains a proposed extension of the axiom schemata given in Table 4.2
for PF that adds communication, called PH . With respect to PF we have
adapted axiom D2, removed axiom F and replaced it by the handshaking axiom
H. We also have removed D5 because it is no longer sound (see Section 5.1).
Refer to Appendix A.3 for the full equational base.

(D2) a.x \H ≈ 0 if a, a ∈ H

(C1) 0 | x ≈ 0
(C2) a.x | b.y ≈ τ.(x ‖ y) if b = a
(C3) a.x | b.y ≈ 0 otherwise
(C4) (x+ y) | z≈ x | z + y | z
(C5) x | y ≈ y | x
(C6) (x | y) | z ≈ x | (y | z)
(C7) (x T y) | z ≈ (x | z) T y

(H) x | (y | z) ≈ 0

Table 5.2: The proposed axiom extension for PH

From here on, the chapter will follow a different structure as the previous chap-
ters. First, we will consider the soundness of the base in the next section and
show that obvious axioms for distribution of restriction over left merge and com-
munication merge are not sound. These results lead us to believe that we deal
with much more complex normal forms than we had in the previous cases. We
will discuss the complexity issues of the normal forms in Section 5.2. Finally,
we will propose an improved distinguishing valuation in Section 5.3 and show
its distinguishing possibilities, followed by a discussion of other problems that
arise before doing the completeness proof.

5.1 Soundness

The axioms C1–C7 and H are well-known axioms ([5, 7, 10]) and therefore we
will not prove their soundness here. One might think of adding the axiom D5
(see page 18) and the following axiom, D6, to reduce the number of normal
forms by distributing the restriction over communication merge:

(D6) (p | q) \H ≈ (p \H) | (q \H).

However, the following example illustrates that D5 and D6 are not sound. In
our example we apply the axioms in Table 5.2, which is allowed since they are
sound.

Example 5.2. We prove by counter example through instantiation of the left-
hand and right-hand sides of the equations and then showing that the resulting
processes are not bisimilar.

Ad D5. Instantiate with H = {b}, p = a.b.0 and q = b.c.0. Then we have for
the left-hand side that

(p T q) \H = (a.b.0 T b.c.0) \ {b} ≈ a.((b.0 ‖ b.c.0) \ {b}) ≈ a.τ.c.0
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by L1, L2, C1, C2, M and D1–D3. We have for the right-hand side that

(p \H) T (q \H) = (a.b.0 \ {b}) T (b.c.0 \ {b}) ≈ a.0 T 0 ≈ a.0

by D1–D3, L2 and L2. It is obvious that a.τ.c.0 6↔ a.0.

Ad D6. Instantiate with H = {a}, p = a.b.0 and q = a.c.0. For the left-hand
side we have that

(p | q) \ {a} = (a.b.0 | a.c.0) \ {a} ≈ τ.(b.c.0 + c.b.0)

by L1, L2, C1, C2, L5, M and D1–D3. For the right-hand side we have
that

(p \ {a}) | (q \ {a}) = (a.b.0 \ {a}) | (a.c.0 \ {a}) ≈ 0

by D2 and C1. Again, it is obvious that τ.(b.c.0 + c.b.0) 6↔ 0.

Alphabet axioms
The previous example shows us that distribution of restriction over communica-
tion merge and left merge is not possible. In [4], Baeten et al. present conditional
alphabet axioms, axioms that work with restriction based on the alphabet of ac-
tions that are present in the terms (α(p) for some term p). These conditional
axioms could be added to the base as axiom schemata, but they do not consider
open terms or co-actions.
If we consider the following conditional alphabet axiom from [4] (for ACP):

(CA3) α(x) | (α(y) ∩H) ⊆ H ⇒ (x ‖ y) \H ≈ (x ‖ (y \H)) \H,

then we can adapt it for CCS by leaving out the condition, because the result of
a communication in CCS is always τ and can never be part of a restriction. Also
using that q\H ≈ q if q is a closed term that does not contain any of the actions
contained in H (CA3 from [4]), we can introduce more general versions of the
conditional axioms for open terms. Table 5.3 contains these axioms, called the
alphabet axioms from here on, that we add to our proposed equational base.

(DL1) (x T (y \H)) \H ≈ (x \H) T (y \H)
(DL2) ((x \H) T y) \H ≈ (x \H) T (y \H)

(DC1) (x | (y \H)) \H ≈ (x \H) | (y \H)

Table 5.3: The alphabet axioms for PH

The result of applying the alphabet axioms is that an “outer” restriction never
includes actions present in the nearby restrictions “inside”. The restriction
sets of nested restrictions can be made disjoint to some extend. For example:
(a.b.0 | a.b.0 \ {b}) \ {a, b} ≈ (a.b.0 \ {b} | a.b.0 \ {b}) \ {a}. Hence, we have
obtained some form of distribution of restriction, because we are partly able to
push restrictions further inside terms.
Note. The axioms DL1, DL2 and DC1 only work in CCS because it has an
symmetric communication relation of action and co-action and the fact that a
restriction blocks both of them. In ACP, a communication function dictates
which actions communicate and also what the resulting communication action
is, which can be a member of a restriction set. In CCS τ is never a member of
a restriction set.
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5.2 Normal Forms

Due to the fact that a restriction \H cannot be distributed over T or |, we have
considerably more normal forms for PH than we have for PF . Note that although
the alphabet axioms of Table 5.3 do not contribute much to the reduction of
the amount of normal forms, they do introduce the useful “disjoint restriction
set” property for nested restrictions.
As mentioned before in Section 3.1, the normal forms can be considered as the
result of repeatedly applying the distributive axioms pushing the restriction
inwards. However, this time, there are no distribution axioms for restriction
over left merge and communication merge. This results in a large amount of
normal forms.

Example 5.3. In this example we examine what kind of normal forms we can
expect. We assume that p, q ∈ Pnf

H .
First of all, we have the normal forms of PF : 0, a.p, p+ q and x \H T p. Note
however that in PF the restriction distributes over left merge, (x T p) \ H ≈
(x \H) T (p \H), which is not possible in PH . So, we probably will have the
normal form ((x \H) T p) \ J where H ∩ J = ∅ by DL1, DL2.
Secondly, because we can not use L4 when a restriction is placed over (x T y)
we have that the left-hand side of every left merge can again be a left merge
under restriction. This can lead to normal forms with an unbounded nesting of
left merges under restriction. An example of such a normal form is:(((

(x \H T y) \ J
)

T z
)
\M

)
T p.

Note that for this normal form we do know that H ∩ J = J ∩M = L ∩M = ∅
by DL1, DL2.
Thirdly, for the communication merge we will have similar problems with C7.
However, this is similar to what is described in the previous paragraph. For now,
we only consider normal forms with the following communication possibilities,
either two variables communicate (x \H) | (y \ J) or a variable communicates
with a prefix (x \H) | a.0.

We will not capture all these possibilities in a grammar as we have done before
and we have no proof to establish all normal forms.

5.3 Completeness

The complexity of proving the completeness of the equational base of PH can
be attributed to the large amount of normal forms. A second cause is that if we
have two simple normal forms, similar except for the fact that the restriction is
distributed over the elements, then they are hard to distinguish.
The counter examples for the soundness of D5 and D6 show an exploitable
difference. When restriction is applied directly to a variable (e.g. (x \H) | a.0),
it is able to prematurely block communication, whereas it is not able to do
so when the restriction is applied to a communication merge or merge (e.g.
(x | a.0) \ H or (x ‖ a.0) \ H). A solution for distinguishing these two types
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of normal forms is to use this characteristic to adapt the �w valuation in such
a way that it allows all possible communications. The valuation should make
sure that it is possible to determine which communication(s) happened from the
residual.

Definition 5.4. We define the valuation ]w by assigning a unique identifiable
process for each variable x ∈ V:

]w(x) =
∑
a∈A

a.ζdxe·w,bac with ζi,k =
i∑

j=1

χj·k and χn =
∑
a∈Aτ

an.0

with w ≥ 1 and injective functions d·e : V → (N− {0}), b·c : A → (N− {0}).
Note that ζi,k always has a branching degree of at least i and an exact length
of i · k because the term

∑i
j=1 τ

j·k.0 is part of ζi,k and cannot be removed by
any restriction.

The valuation ]w has the same branching degree properties as �w. However,
the ζi,k process(es) in the residual will have a length that is a specific multiple
of the action that was taken before getting this ζi,k-process. This is useful for
detecting which communication happened.

Example 5.5. Consider the two different normal forms s = (x | a.0) \ {a} and
t = (x \ {a}) | a.0. Evaluating these normal forms under ]w with dxe = 1 and
w = 2, we have that

[[s]]]w = ([[x]]]w | a.0) \ {a} ≈ τ.(ζ2,bac \ {a}),
[[t]]]w = ([[x]]]w \ {a}) | a.0 ≈ 0.

Not only can we see the difference between the two terms, but also we can
detect from the residual of [[s]]]w after performing the action τ , [[s]]]w

τ−→ ζ2,bac,
that x was involved in a communication with a = a. This is also still possible
if the restriction set contains all actions. Consider s = (x | a.0) \ {a, b} and
t = (x | b.0) \ {a, b}. Then,

[[s]]]w = ([[x]]]w | a.0) \ {a, b} ≈ τ.(ζ2,bac \ {a, b}) ≈ τ.(τ bac.0 + τ2bac.0),
[[t]]]w = ([[x]]]w | b.0) \ {a, b} ≈ τ.(ζ2,bbc \ {a, b}) ≈ τ.(τ bbc.0 + τ2bbc.0).

Note the difference in length of the residuals of [[s]]]w and [[t]]]w, which is respec-
tively 2bac and 2bbc.

Example 5.6. We now examine a more complicated case with nested restric-
tions. Given the normal form u = ((x \ {a}) | (y \ {b})) \ {c} with dxe = 1,
dye = 2, L = {a, b, c}, and w = 2, then we have that

[[u]]]w = (([[x]]]w \ {a}) | ([[y]]]w \ {b})) \ {c}
≈ τ.

(
((ζ2,bcc \ {a}) ‖ (ζ4,bcc \ {b})) \ {c}

)
+ τ.

(
((ζ2,bcc \ {a}) ‖ (ζ4,bcc \ {b})) \ {c}

)
.

The residual of [[u]]]w is not unique, but either residual gives us the same infor-
mation:
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The residual ((ζ2,bcc \ {a}) ‖ (ζ4,bcc \ {b})) \ {c} contains two parallel prime
components with branching degrees that exceed w, so there must have been
two variables in u. The high branching degrees have a typical value that is a
multiple of w from which we can determine which variable was evaluated based
on the choice of d·e.
From the length of the residual, which is a multiple of bcc or bcc, we can see
that a communication occurred of c with c. The residual is not able to perform
any c actions, though a communication occurred with c, hence there must be a
restricting on {c} outside. The inner restrictions can be determined based on
the actions that each parallel prime component can perform.

Example 5.7. This example illustrates another complication when using the
valuation ]w. We consider an instantiation of the earlier presented example of a
process with nested left merges and restrictions: ((((x\{b}) T y)\{a}) T z)\{b}.
If we evaluate the normal form with ]w where w = 2, dxe = 1, and L = {a, b},
then one of its residuals is: ((((ζ2,bac \ {b}) ‖ [[y]]]w) \ {a}) ‖ [[z]]]w) \ {b}. Before
we can say anything about the parallel composition of the residual, we need to
get rid of the restrictions. We will not go into detail about the resulting process
term, however, it is clear that the result is complex.

We can conclude that the ]w-valuation provides us with much more information
about the structure of the normal form. Nevertheless, there are some open
issues:

• The exact number and structure of normal forms is not yet known. Also,
the proof establishing these normal forms has to be done.

• Example 5.6 shows us that it is possible to distinguish a directly applied
restriction from a restriction on a communication. However, we need a
proof to establish that it covers all the cases.

• How can we distinguish between ((x | p) T q) \H and ((x | p) \H) T q or
even between (x \H) T p and (x T p) \H?

• Given normal forms with nested left merges under restrictions, how are
we going to accurately detect which restriction set has which effect?

• Are there more axioms like DL1, DL2 and DC1 that reduce the number
of normal forms?

We believe that the proposed equational base, possibly extended with more al-
phabet axioms, can be proved complete when the normal forms are known. This
result can be obtained with some adaptations of the distinguishing valuation ]w
so that it be able to distinguish all normal forms types.
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Conclusion

In this thesis we have established finite equational bases for CCS with restric-
tion. We have proved the soundness of the bases where necessary and used the
normal form strategy to prove the completeness of the axiomatisations. Due to
the complexity that restriction adds, we first started out with a basic fragment
of CCS without any form of parallelism, called BCCSP+Res. Using the distin-
guishing valuation ∗m, based on the notion of length, we were able to prove the
completeness of the axioms of P.
Then we extended our fragment with parallelism, called PF , in such a way
that it only allows interleaving of actions. The distinguishing valuation was
generalised from ∗m to �w, basing it on the branching degree of processes rather
than the length. Using this valuation, we were able to prove the completeness
of the axioms of PF .
Furthermore, we have extended the fragment, called PH , to allow CCS-style
communication. We have adapted the conditional alphabet axioms of Baeten
et al. to our purely equational setting with open terms. Unfortunately, this
led to a number of problems. Firstly, because restriction does not distribute
over T or |, there is a large amount of normal forms to consider. Secondly, it
is hard to distinguish between these normal forms. We have proposed a new
distinguishing valuation ]w, based both on length and on branching degree, that
can distinguish among some of the normals but not all.
Future work could look into the problems concerning the last mentioned frag-
ment and the proposed ]w valuation. Once solved, it should be easy to generalise
the theory with CCS-style communication to ACP-style communication, taking
into account that the introduced CCS-specific alphabet axioms no longer apply.
Other fragments that can be considered could contain other operators such as
sequential composition (·), the empty process ε, or renaming and abstraction.
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Appendix A

Equational Bases

A.1 The Equational Base of P

(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

(D1) 0 \H ≈ 0
(D2) a.x \H ≈ 0 if a ∈ H
(D3) a.x \H ≈ a.(x \H) otherwise
(D4) (x+ y) \H ≈ x \H + y \H

(DX1) x \ ∅ ≈ x
(DX2) x \ A ≈ 0
(DX3) (x \H) \ J ≈ x \ (H ∪ J)

Table A.1: The axioms of P
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A.2 The Equational Base of PF

(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

(D1) 0 \H ≈ 0
(D2) a.x \H ≈ 0 if a ∈ H
(D3) a.x \H ≈ a.(x \H) otherwise
(D4) (x+ y) \H ≈ x \H + y \H
(D5) (x T y) \H ≈ x \H T y \H

(DX1) x \ ∅ ≈ x
(DX2) x \ A ≈ 0
(DX3) (x \H) \ J ≈ x \ (H ∪ J)

(L1) 0 T x ≈ 0
(L2) a.x T y ≈ a.(x ‖ y)
(L3) (x+ y) T z ≈ x T z + y T z
(L4) (x T y) T z ≈ x T (y ‖ z)
(L5) x T 0 ≈ x

(M) x ‖ y ≈ x T y + y T x+ x | y

(F) x | y ≈ 0

Table A.2: The axioms of PF
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A.3 The Proposed Equational Base of PH

(A1) x+ y ≈ y + x
(A2) (x+ y) + z ≈ x+ (y + z)
(A3) x+ x ≈ x
(A4) x+ 0 ≈ x

(D1) 0 \H ≈ 0
(D2) a.x \H ≈ 0 if a, a ∈ H
(D3) a.x \H ≈ a.(x \H) otherwise
(D4) (x+ y) \H ≈ x \H + y \H

(DX1) x \ ∅ ≈ x
(DX3) (x \H) \ J ≈ x \ (H ∪ J)

(L1) 0 T x ≈ 0
(L2) a.x T y ≈ a.(x ‖ y)
(L3) (x+ y) T z ≈ x T z + y T z
(L4) (x T y) T z ≈ x T (y ‖ z)
(L5) x T 0 ≈ x

(DL1) (x T (y \H)) \H ≈ (x \H) T (y \H)
(DL2) ((x \H) T y) \H ≈ (x \H) T (y \H)

(C1) 0 | x ≈ 0
(C2) a.x | b.y ≈ τ.(x ‖ y) if b = a
(C3) a.x | b.y ≈ 0 otherwise
(C4) (x+ y) | z ≈ x | z + y | z
(C5) x | y ≈ y | x
(C6) (x | y) | z ≈ x | (y | z)
(C7) (x T y) | z ≈ (x | z) T y

(DC1) (x | (y \H)) \H ≈ (x \H) | (y \H)

(M) x ‖ y ≈ x T y + y T x+ x | y

(H) x | (y | z) ≈ 0

Table A.3: The axioms of PH


