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Abstract

MathLang is a language for mathematics on computers. It allows computerisa-
tion of existing and new mathematical texts written in the Common Mathemati-
cal Language, and checking the grammatical correctness of this computerisation.
The framework also allows the user to take incremental steps towards the gen-
eration of a fully formalised document in such a way that the result can be
checked by a proof checker.

This report describes the language itself, its grammar, elements, characteristics
and one of the concrete syntaxes: the plain syntax. An encoding of a large
example is presented and explained.

The main focus of the report lies on the implementation of the heart of the
framework: MathLang-Core. While the architecture has changed to a more
XML-centred design during the implementation, both the old and proposed
new architectures are discussed. Four components can be distinguished in the
framework: the parser, the abstract syntax tree, the checker and the printer.
The latter has many different instances for many formats.

Finally the report considers the implemented components and their role in the
new architecture. Some components can be used directly, some have to be
bridged or modified.
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Chapter 1

Introduction

My work on the MathLang project mainly concerned implementing parts of the
core (see Section 2.2) and reworking some of this implementation when at a
later stage the architecture was changed to achieve greater flexibility. I want to
mention beforehand that not all rework has been completed. This report will
mainly discuss what parts have been created (Chapter 3), what has changed
(Section 3.1), what has been reworked and what still needs to be reworked (see
Section 5.1).

1.1 What is MathLang?

MathLang is next to what the name suggests (a mathematical language) also
a framework for writing mathematical texts. It allows for more formalisation
than the normal Common Mathematical Language (CML) does in such a way
that one can check the correctness of grammar of the text (on some given level).
It also allows for conversion to more stringent forms at a later stage so that it
can be checked by proof checkers such as (Mizar1, Coq2, PVS3, etc.).

1.1.1 Vernacular

MathLang has it roots in both Mathematical Vernacular (MV) [2] and the Weak-
Type Theory (WTT) [11], which also has its roots in MV.

MathLang tries to capture the “mathematical vernacular”. The best way to
explain what that is, is by citing The Mathematical Vernacular by N.G. de
Bruin [2]:

The word “vernacular” means the native language of the people, in
contrast to the official, or the literary language (in older days in

1See http://mizar.org/.
2See http://coq.inria.fr/.
3See http://pvs.csl.sri.com/.
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contrast to the latin of the church). In combination with the word
“mathematical”, the vernacular is taken to mean the very precise
mixture of words and formulas used by mathematicians in their bet-
ter moments, whereas the “official” mathematical language is taken
to be some formal system that uses formulas only.

We shall use MV as abbreviation for “mathematical vernacular”.

This MV obeys rules of grammar which are sometimes different from
those of the “natural” languages, and, on the other hand, by no
means contained in current formal systems.

All “mathematical vernaculars” that are used around the world for any arbi-
trary kind of mathematical foundation are captured by CML: the Common
Mathematical Language (CML). MathLang lives in the space between CML
and the language of any formal system that uses formulas only.

1.1.2 Language on Computers

MathLang is more than just a mathematical vernacular:

MathLang is a language for mathematics on com-
puters.

MathLang is a language. It is meant to be used for communica-
tion and as a concrete support for human mind constructions.
MathLang is a constructed language aimed to synthesise the
common mathematical language.

MathLang is for mathematics. It is meant to be open to any
branch of mathematics and to any topic that uses mathematics
as base language. MathLang mimics mathematics in its incre-
mental construction of a body of knowledge.

MathLang is on computers. It is meant to be a communication
medium between human and computer systems, between hu-
mans via a digital support and between computer systems.
MathLang is a computerised language and therefore offers au-
tomation possibilities.

(from The MathLang Manual [7])

History. The first version of MathLang (version 1.x) was developed as a small
adaption of the WTT [13] and later refined [12]. The WTT itself was a re-
finement of de Bruin’s MV [11]. Late in the development of the WTT-based
MathLang some limitations appeared during the translation of Euclid’s Ele-
ments [10]. At this point the language of the MathLang framework, MathLang-
Core (MathLang-Core), was revised [14] and object-orientedness was added.
This meant that the development of MathLang implementation had to be restarted.
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Versioning. Due to the many versions and revisions available of MathLang a
versioning scheme was introduced. This scheme is described in detail in [6]. A
short summary:

This MathLang grammar (and related feature grammars) is ver-
sioned using the following scheme: x.y.z, where each number has its
own meaning:

x is the major number. It is incremented when MathLang as a
whole changes. [. . . ]

y is the minor number. This number is incremented when the
grammar “interface” changes [. . . ]

z is the micro number. This is incremented when small changes
are made to the grammar [. . . ]

Syntaxes. Since MathLang is targeted at computerisation4, there are several
syntaxes available at the moment:

1. The XML syntax defined by a Document Type Definition (DTD) given in
Appendix B. The XML documents can be generated by editors or other
future applications that MathLang can be embedded in.

2. The plain syntax defined by the grammar given in Appendix A. This
syntax is mainly used to create a MathLang document in a very easy way.
It is close to the abstract syntax and structure of MathLang as well as the
WTT syntax [11]. This syntax is more oriented towards experimenting
and testing purposes rather than use in a future application.

While the Extensible Markup Language (XML) syntax is a very important
aspect of the MathLang system, this document will mainly use the plain syntax
for its clarity and compactness.

1.2 Notations and Conventions

As stated in the previous subsection the plain syntax is the most used in this
document. The notation of the plain syntax is given by the grammar in Ap-
pendix A and will be is elaborated on in Section 2.4.

Acronyms

The following acronyms and abbreviations are used throughout this document:

AST Abstract Syntax Tree
4The term computerisation refers to storing in a computer. However, when a text is

translated using a specific syntax, information will be lost. To keep this in mind we call the
translating process: encoding.
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CML Common Mathematical Language

DTD Document Type Definition

DCf Document Context feature

DOM Document Object Model

IJf Informal Justification feature

MLf Meta Logic feature

MV Mathematical Vernacular

OO Object-Oriented

XML Extensible Markup Language

WTT Weak-Type Theory

N.B. All MathLang features will have an abbreviation that starts with a normal
acronym describing the function and than end with a small “f”.

Glossary

Below is a list of technical terms that are used often in this report but not
explained:

Abstract Syntax Tree A data structure representing something that has been
parsed in a tree form. The nodes of the tree represent elements of the ab-
stract syntax corresponding to the concrete syntax that has been parsed.

Common Mathematical Language The mixture of natural languages and
formulae used in mathematics and other fields of science to express math-
ematical notions.

Document Type Definition The definition of an SGML or XML document
that specifies which elements there are, which attributes they can have
and how they can be nested (structured) in each other.

Object-Oriented A programming paradigm that organizes data structures
into class definitions which can be instantiated as objects. These objects
can have procedures that effect the object’s internal state or allows for
interaction with other objects.
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1.3 Outline

The next chapter will explain MathLang as a language. It will discuss the goals,
grammar and one of the concrete syntaxes of the language. The chapter after
that will elaborate on the architecture of the framework and the parts that
have been implemented. Thereafter an example encoding of a real text5 will
be presented and explained. Finally a conclusion will be drawn together with a
description of future work in this area.

5That is, a text written by a mathematician about a mathematical topic.



Chapter 2

The MathLang Language

This chapter will elaborate on what MathLang exactly is, what its goals and
characteristics are and how to use it. The first section will state the goals of
MathLang after which the next section will give an overview of the design and
extensibility. The last section will present the plain syntax of MathLang showing
how to write or encode a text in MathLang.

2.1 Goals

It is easy to imagine that there are infinite ways in which CML can be implicit,
informal or ambiguous. MathLang could help with this. However, having every
mathematician learning a new syntax is not ideal either. So, MathLang should
stay close to the CML and do its work in the background as a layer under the
text that can be checked for correctness grammar-wise. Next to that should it
not enforce one specific logic system, set/type theory or way of deriving truth
but be as flexible as possible.

Considering the original goals of MV [2], WTT [11] and what is written above
as being the most important aspects of MathLang, we can identify the following
four main goals:

1. Computerisation of mathematical texts: The computerisation should
capture the text in a precise way. This means that MathLang should not
just split the CML up into chunks and store them.

2. Forcing no specific set/type theory: Maximal flexibility is required
so that encoding of all possible mathematical text is an attainable goal.

3. Guiding the author: MathLang should aid the mathematician during
the writing of text. It should identify problems, such as ambiguities and
missing information, be uniform and consistent.

4. Allow for stepwise path to formalisation: Although not compulsory,
MathLang should provide ways to incrementally formalise a text so that
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in the end it can be verified by a proof system. At the same time the
starting point should be very close to the CML text.

For example historical documents are hard to formalise, but can be com-
puterised. A new theorem can be written and steps can be taken to convert
it to FPS [18] and then to the Mizar system/language.

2.2 Core & Features

As mentioned in the previous subsection we want MathLang to allow for step-
wise formalisation. This requires a design of the framework that has a layered
structure.

At the heart of the MathLang framework we find MathLang-Core. It defines
the mathematical grammar elements and basic structure (see Section 2.3). It is
obvious that although a text can be encoded into a MathLang-Core, information
loss is still inevitable. To be able to capture more of the original text and
allow for example for incremental steps towards formalisation, features were
introduced.

A feature is defined on top of MathLang-Core and other features and extends
the capability of parsing and checking of the input text. In essence it refines
the language it is built upon. Below are some descriptions listed of some of the
features that were defined at the time of writing:

• DCf: The Document Context feature defines textual structures and en-
tities that are present in most mathematical CML texts. It defines anno-
tations for MathLang-Core texts for sectioning it into documents, chap-
ters, sections, etc. The feature also allows for identifying more semantical
things than chunks of text that sometimes are left implicit like assertions,
lemmas, proofs, theorems, hints, their dependencies and links. With the
feature enabled errors in the structure (a chapter in a section) or missing
entities (a proof for a theorem) can be found.

• IJf: The Informal Justification feature attempts to capture words in math-
ematical texts like: “hence”, “by”, “since” and different kind of ways that
local scopings can be used. For example introductions, hypotheses and
considerations can be distinguished. With this feature these logical anno-
tations can be checked and holes in proofs or (missing) proof obligations
can be found.

• MLf: The Meta Logic feature attempts to fill the holes that are left behind
when a text is written in Core + DCf + IJf. It is used to describe the logical
framework the author needs to be able to fulfil the proof requirements so
that the text can reach logical completeness next to the already available
semantical and logical information.
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2.3 Grammar, Elements and Object-Oriented

When writing a mathematical text in plain CML certain types of elements and
structures can be identified. It has been proven useful to draw an analogy
with natural language grammar (its elements and structure). MathLang tries
to capture this grammar seen through “the mathematical glasses” in a CML
text as done before by its “ancestors”: MV and WTT. It identifies the element
types and makes sure that the grammar of the text is correct and consistent.

Type Example
Adjective even, odd, trilateral
Declaration x ∈ R, G : graph
Definition ceil(x) is the smallest integer larger than x, O := (0, 0)
Noun a natural number, circle
Set the natural numbers, Z
Statement 3 > 0, true ⇒ false
Term the graph G, 3

Table 2.1: Basic Elements in MathLang

Table 2.1 contains a list of elements that MathLang identifies. The following
two subsections will go into more detail about what these elements represent.

2.3.1 Nouns, Adjectives, Sets & Terms

A noun is a generic description that captures the characteristics of some class of
objects, whereas an adjective can refine this description. For example: vector or
a vector is a noun. When saying that −→v is a vector, one does not say specifically
which vector but just that −→v has the characteristics of one: −→v is an object that
has a length and angle.

An adjective for a vector could be that it is a unit vector. This fixes the length
of the class of unit vectors to the value 1.

A term is a specific element of the class that satisfies these noun characteristics.
Considering the previous example −→w could be a vector term, e.g. (2 2), (-2 0)
or (0 1). The last vector also being a unit vector term.

The set of a noun can be seen as a (possibly infinite) collection of terms satisfying
the noun characteristics. For example, the set of vectors {(x y) | x, y ∈ N} is
called the vector space over the field R.

In plain syntax (see also Section 2.4) this example would be written as:

1 vector := Noun { length : N;
rho : angle ; };

unit := Adj (vector ) { length := 1; };

6 v : vector ; (∗ vector (−2 0) ∗)
v . length := 2;
v . rho := 180;
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w : unit vector ; (∗ unit vector (0 1) ∗)
11 w. length := 1;

w. rho := 90;

N.B. A comment in the plain syntax is expressed by: (∗ ... ∗).

Object-oriented. A previous implementation of MathLang was based on the
WTT [11] with some small adaptations. However, for some encodings it appears
to be very hard to capture the essence of the text. Some object-orientedness was
added. This paradigm, used in many modern program languages, contributes
to the expressiveness of the language [14].

Consider the explanation of nouns, adjectives, terms and sets in the previous
paragraph in a more Object-Oriented (OO) setting:

A noun is a class definition: it defines the attributes and characteristics of some
group of elements.

An adjectives is a mixin. When mixed into a noun it refines the class by adding
new attributes or constraints, thus creating a new class.

A term is an object instance of class defined by the noun.

A set of a noun is a collection of object instances, i.e. all object instances that
are possible.

An example listing of some code in a OO language1 that could be one of many
possible implementations of the vector example:

class Vector
attr : length
attr : direction

5 def i n i t i a l i z e ( len , dir )
@length = len ; @direction = dir

end
end

10 module Unit
def i n i t i a l i z e

super # cal l Vector . i n i t i a l i z e f i r s t
assert ( sel f . length = 1)

end
15 end

class UnitVector < Vector
include Unit

end
20

v = Vector .new(2 , 180) # vector (−2 0)
w = UnitVector .new(1 , 90) # unit vector (0 1)

1This listing uses the Ruby programming language: http://ruby-lang.org.
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2.3.2 Declarations, Definitions & Statements

Declarations, definitions and statements form the main lines of a text. A state-
ment aims at stating a property or a truth, for example: orthogonal(v, w). The
declaration denotes the type of some identifier (see also Section 2.3.3). It also
can express that some object is a member of some class (a noun, e.g. v : vector)
or a member of a collection (set) of objects for some class (e.g. n ∈ N).

Though maybe the most important elements are the definitions. A definition is
more than just a mathematical definition: it binds identifiers to nouns, adjec-
tives, terms, sets or statements and types them in the process.

Identifiers have multiple roles in MathLang. They are:

• Names for defined nouns, adjectives and sets (vector)

• Variables referring to objects (−→v )

• Functions (length)

• Binders (∀x . . . )

The role is determined by the definition (or declaration) of the identifier.

2.3.3 Types

In MathLang all identifiers have a type2 that consists of a list of parameter
types and one result type. This type is represented with the 2-tuple:

Tid := (Ta × · · · × Ta)× Ta

When an identifier refers to a constant and thus has no parameters, the empty
parameter type list will be denoted as ().

Element Type
Adjective Adj(Tmap, Tmap)
Declaration Dec(Tid)
Definition Def (Tid)
Noun Noun(Tmap)
Set Set(Tmap)
Statement Stat
Term Term(Tmap)
Step Step

Table 2.2: Basic Elements in MathLang

The parameter and result types are atomic types Ta (see Table 2.2 for the
defined types). For example, the equality (=) identifier can have the type

2Assuming the identifier in question can be typed correctly.
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((Term(〈〉), Term(〈〉)), Stat). This can be simplified to ((Term, Term), Stat)
and even syntax-sugared as (Term,Term) → Stat.

Some atomic types wrap a type mapping Tmap, which is a partial function of
identifiers (the set I) to atomic types:

Tmap := I → Tid

This mapping captures the identifiers that were defined during a noun (class)
definition, adjective (mixin) definition, set (set of object) or simple instantiation
(object). Some examples:

• The noun representing a graph which has a set of vertices and set of edges
could have the type: Noun(〈V 7→ (() → Set), E 7→ (() → Set)〉).

• The adjective for a vector that restricts the length:
Adj(〈rho 7→ (() → Term), length 7→ (() → Term)〉).

If there are no identifiers declared or defined, the empty mapping is denoted by
〈〉 and usually left out of the specification of the atomic type.

The atomic types Def and Dec wrap the type of the identifier that was defined
or declared respectively. For example, the type of the definition of equality (=)
would result in: Def ((Term,Term) → Stat).

The Step type is different from the other types. This type is only used for
structure. All phrases, blocks and local scopings are typed Step if they contain
one or more elements that has a valid type.

2.4 Plain Syntax

This section will explain one of MathLang’s concrete syntaxes: the plain syntax.
It will show how each of the elements given in previous subsections can be
represented and used in the language. The first sections will show how to create
expressions and the last two sections will show how to structure the text.

2.4.1 Declarations & Elementhood

A declaration defines the type of an identifier (see also Section 2.3.3). A declared
identifier can then be used in a definition or an instantiation that we will see
later on.

Constants: Constant declarations are usually not mentioned explicitly in the
text, they are just assumed to be known. However for MathLang this means
that they will have to be made explicit:

true : term ;
nat : noun;
N : set(nat ) ;
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After these declarations true can be used as a term, nat could refer to a natural
number and N to the set of natural numbers.

Functions, variables: Functions and variables (and predicates) can be de-
clared in a similar way as constants. The difference is that these identifiers carry
parameters.

S(term) : term ;
not(term) : term ;
=(term, term) : stat ;

Because only a few mathematical symbols can be encoded directly in the plain
syntax, some symbols have to be encoded by their name. For example, ¬(x) is
encoded as not(term) : term;.

Binders: In MathLang binders are considered to be parameterised identifiers
as well. They carry a specific parameter: a declaration of some (dummy) vari-
able. The declaration of a declaration of some variable is encoded with dec (‘ x),
where ‘ x means “some variable x”. So the declarations of ∀x and ∃x are:

f o ra l l (dec( ‘x) , stat) : stat ;
ex ists (dec( ‘x) , stat) : stat ;

Elementhood: When the right-hand side of the declaration is an expression
and not some abstract type the declaration is called a declaration of element-
hood. This is typically used for encodings of “0 is a natural number” or n ∈ N:

0 : nat ;
n : N;

2.4.2 Definitions

Definitions are used to define the meaning of some identifier. Note that not all
definitions are mentioned explicitly in mathematical texts, some are hidden.

Simple definitions: This definition binds an expression to an identifier. The
identifier to-be-defined may have named constant3 parameters. For example the
definition of the term false:

fa l se := not( true ) ;
is nat (n) := exists (m : N, =(n, m)) ;

3A function or predicate as parameter is not allowed. These “definition parameters” will
have parameters by themselves.
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Definition by case: The by-case definition is slightly different from the sim-
ple definition. It does not completely define the identifier but just a specific
case. Because of this, the parameters of the defined identifier can be expres-
sions (mainly instantiations) and a different definition symbol is used (˜=).

Consider the following inductive definition of the positive predicate:

posit ive (0) ˜= fa lse ;
posit ive (S(n)) ˜= true ;

2.4.3 Instantiation

An instantiation is just a constant, variable or binder with arguments that
comply with the declared or defined type. In the previous sections some instan-
tiations were already given using not , true, exists, =, n and m. A repetition of
the two definitions containing these instantiations:

fa l se := not( true ) ;
is nat (n) := exists (m : N, =(n, m)) ;

2.4.4 Nouns & Adjectives

As explained in Section 2.3.1 there are also nouns and adjectives like in natural
languages. There are many uses for these two element types but first they have
to be defined.

Simple nouns & adjectives: The definition of simple nouns and adjectives
are equivalent to their declaration. That is, to define an identifier x to be a Noun
is to declare it to be a noun. The Noun and Adj expressions are considered to
be more like a constructor, they define a specific class and mixin respectively.
For example:

nat := Noun;
odd := Adj (nat ) ;
even := Adj (nat ) ;

This will make nat a noun and odd and even adjectives for this noun.

More contrived nouns & adjectives: As mentioned in the previous para-
graph the Noun and Adj expressions can define specific classes and mixins.
Consider the following definitions:

l ine := Noun { length : term ; };
f i n i t e := Adj ( l ine ) { exists ( l : N, =(sel f . length , l ) ) ; };

A line is a noun which has a length and finite is an adjective for lines (that is,
classes or objects which have a line attribute) that constraints the line to have
a specific length.
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Note that in a noun definition self refers to the noun itself as if it was instanti-
ated. In an adjective definition self returns to the new, refined noun and super

to the original noun.

2.4.5 Refinement & Sub-nouns

It seems obvious that the nouns and adjectives are combinable like in natural
language.

Refinement: When a noun is preceded by an adjective, a new noun is formed:

line segment := f i n i t e l ine ;
two fold := even nat ;

The line segment could also have been defined in one go:

line segment := Noun { length : term ;
ex ist ( l : N, =(sel f . length , l ) ) ; };

However that would mean that if the line definition is changed it will have no
effect on the line segment . This shows the reusability of adjectives.

Sub-noun: The sub-noun states for A <− B that every A is a B4. For Math-
Lang this means that the noun A should at least have everything that noun B
has. Given the previous definitions of line and line segment we can write:

line segment <− l ine ;

Adjective statement: This statement is similar to the sub-noun statement,
except that it involves a term and adjective:

l : line segment ;
l <− f i n i t e ;

Here l is said to be a line segment , so l is a line which is finite (has a finite
length).

2.4.6 Phrases & blocks

The previous sections described ways to create expressions. Next to these ex-
pressions MathLang also has elements to structure the text: phrases, blocks
and local scopings. The local scopings will be described in the next section. All
these elements are considered to be steps and are ended by a semi-colon ( ;). A
MathLang document is simply said a sequence of steps.

4This is similar to N.G. de Bruin’s A� B given in [2, Section 12].
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Phrases: The phrase is the atomic step. It wraps one singular expression (a
definition, a declaration or an instantiation). All previous examples have been
phrases. Another phrase example:

f o ra l l (k : N,
fo ra l l ( l : N, =( f (k) , f (m) ))) ;

Blocks: To bundle a series of phrases (mixed with nested blocks and local
scopings), one uses the block. This is a sequence of steps enclosed in curly
braces ({. . . }):

{ i s zero (0) ˜= true ;
is zero (S(n)) ˜= fa lse ; };

Note that if the whole document seems to be a list of phrases, an implicit outer
block is present.

2.4.7 Local Scoping

The local scoping is a combination of two steps combined with the “local”
operator (|>). It denotes that identifiers defined or declared in the first step can
only be used in the second step called the body, but not further on in the text.
Thus they are kept local to the body. For example:

{ n : N; or(term, term) : stat ; } |>
or( not( is zero (n)) , is zero (n) ) ;

The identifiers n and or are used in the body but will not be declared nor defined
further on in the text until redeclared.

The local scoping can be used to encode flag notations for assumptions and
introductions. For example, the snippet above could be an encoding of:

var n ∈ N

declaration ∨

n = 0 ∨ n 6= 0

2.4.8 Labels & References

In MathLang it is possible to label a step and refer to it later. The following
encoding labels the declaration step 1 : nat ; with the label “L1” and uses it
later in a local scope. Labels are preceded with a pound (#) character.

label #L1 1 : nat ;

ref #L1 |> 1 : odd nat ;
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Implementation

This chapter will discuss the status of the implementation at the time of writing.
The first section will discuss the architecture of the framework and the shift of
focus that occurred during implementation. The following sections will deal
with the four stages that can be distinguished in the processing of a MathLang
text: parsing the text, constructing the Abstract Syntax Tree (AST), checking
and typing the AST, printing the AST (to several formats).

Consider the example that will be used in the following subsections to show
each stage of the process:

(∗ Some terms and variables ∗)
0 : term ;
s (term) : term ;

4

x : term ;
y : term ;

(∗ Definition by cases of addition ∗)
9 a(x , 0) ˜= x ;

a(x , s(y)) ˜= s(a(x , y )) ;

For the implementation the programming language OCaml [19] was used. This
language was chosen mainly because of the experience of the team with the
language, its type system, object-orientedness and the fact that previous im-
plementations also had been done in this language. The code was modularised
conform the four stages: AST, parser, printers, checker. These modules were
used by the two resulting programs described in the last section (Section 3.7).

3.1 Framework Architecture

The implementation of the components followed two related architectures: the
original one that only kept an XML-centred design in mind and the new pro-
posed architecture that was a result of a design.
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The original architecture. The original architecture is shown in Figure 3.1.
The solid boxes and ellipses represent components that have been implemented,
whereas the dotted shapes represent planned components.

Figure 3.1: First Architecture of the Implemented Components

The concept of the architecture is quite simple. First the system parses the plain
syntax document and generates an AST. During parsing it prints the errors if
there are any and aborts the process. If there are no parse errors, a complete
parse tree will have been constructed. On that tree the type inference/checker
can do its work. It can process the tree recursively, infer the types and during
inference make sure that there are no typing problems or errors. Afterwards all
errors found during the inference/checking can be printed. At any moment the
AST can be fed to a printer, thus converting it into another format.

The proposed architecture. Half-way during the implementation a decision
was made to move to a more XML-centred architecture. Specifically a move to
the Document Object Model (DOM):

The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access
and update the content, structure and style of documents. [16]

Instead of the AST having a specific interface of our own design, the central
data structure –the DOM graph– would have a generic and specified (see [16])
interface. This change required a revision of the first architecture. The new
architecture is shown in Figure 3.2.

To be able to reuse the implemented components in this architecture, the fol-
lowing actions were or will have to be taken:
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Figure 3.2: Proposed Architecture

1. The plain document, tree, and DOT printers must be modified to use the
DOM graph as input.

2. The plain parser must either construct the DOM graph directly or use a
component to convert the original AST into the the DOM graph.

3. The XML printer can be dropped since the DOM graph can be converted
to an XML document directly.

4. Instead of the type inference/check error printer, the plain feedback printer
has to be created.

At the time of writing (1), (3) and (4) have not been realised. For item (2)
the implementation of this converter turned out to be the easiest solution. The
converter is described in Section 3.6.

3.2 Parser

The plain syntax parser that has been implemented is described in [9]. Its job
is to parse the grammar1 described in [8, 6] and produce an Abstract Syntax
Tree given that there are no errors in the syntax.

The implementation was done in OCaml [19] and Camlp4 [3] in particular.
There were several problems implementing the parser due to overlapping rules
in the original grammar (see [14, Section 4]). However these were all dealt with
using indirect descent parsing as described in [9].

1The grammar is included in this document, see Appendix A.
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Consider the parsing of the example text given at the beginning of Section 3.
The parse sequence that is executed for this example is given in Table 3.1. The
notation that is used in this table is explained in [9, Section 2]. Besides the
notation the right arrow (⇒) is used to remark that something is concluded
by the parser and the vertical lines (|) are used to signify nesting levels (i.e.
recursive calls).

Line Parsing Steps

1–10 document; seq = step seq;
1 ⇒ comment line: ignored.
2 s2 = step;

e1 = exp;
id = ident;
‘:’;
cat = cat;

⇒ e1 [0 : term] is a declaration of 0.
⇒ s2 [0 : term ; ] is a phrase.

...
...

9 s8 = step;
e1′ = exp;

id′ = ident;
‘(’; e′ = exp; id = ident;
⇒ e′ [x] is an instantiation without parameters.
‘,’; e′′ = exp; id = ident;
⇒ e′′ [0] is an instantiation without parameters.
‘)’;

⇒ e1′ [a(x , 0)] is an instantiation with two parameters.
‘∼=’;
e2′ = exp; id = ident;
⇒ e2′ [x] is an instantiation without parameters.

⇒ s8 [a(x , 0) ˜= x ; ] is a definition-by-case.
10 s9 = step; . . . etc.

1–10 ⇒ seq is a sequence of steps (block)

Table 3.1: Parsing Sequence of the Example Text

At the end of the parsing of lines 1 to 10, the parser will have understood that
0 is declared as term, s as a function on terms, x and y as term variables. Also
it will have parsed the definition of a consisting of two cases. The AST that is
eventually created will be shown and explained in the next subsection.

3.3 AST

The AST plays a central role in the original architecture. This data structure
captures the essence of the MathLang text (and in case of a good encoding,
the CML text). The node names used in the AST correspond to rules in the
grammar. This means that there are Noun nodes, Declaration nodes, Step
nodes etcetera. The plain syntax AST is described in [5].

This is the AST that is constructed after the example text has been parsed:



Implementation 24

Line Tree

1–10 Block(loc, meta, ””,
2 〈Phrase(loc, meta, ””,

Dec(loc, meta, Id(loc, meta, ”0”), 〈〉,
Cterm(loc, meta, ””))),

3 Phrase(loc, meta, ””,
Dec(loc, meta, Id(loc, meta, ”s”), 〈Cterm(loc, meta, ””)〉,

Cterm(loc, meta, ””)));
5 Phrase(loc, meta, ””,

Dec(loc, meta, Id(loc, meta, ”x”), 〈〉,
Cterm(loc, meta, None))),

6 Phrase(loc, meta, None,
Dec(loc, meta, Id(loc, meta, ”y”), 〈〉,

Cterm(loc, meta, None))),
9 DefCase(loc, meta, None, Id(loc, meta, ”a”),

〈Inst(loc, meta, CId(loc, meta, 〈〉, ”x”), 〈〉),
Inst(loc, meta, CId(loc, meta, 〈〉, ”0”), 〈〉)〉,

Inst(loc, meta, CId(loc, meta, 〈〉, ”x”), 〈〉));
10 DefCase(loc, meta, None, Id(loc, meta, ”a”),

〈Inst(loc, meta, CId(loc, meta, 〈〉, ”x”), 〈〉),
Inst(loc, meta, CId(loc, meta, 〈〉, ”s”),
〈Inst(loc, meta, CId(loc, meta, 〈〉, ”y”), 〈〉)〉)〉,

Inst(loc, meta, CId(loc, meta, 〈〉, ”s”),
〈Inst(loc, meta, CId(loc, meta, 〈〉, ”a”),
〈Inst(loc, meta, CId(loc, meta, 〈〉, ”x”), 〈〉),
Inst(loc, meta, CId(loc, meta, 〈〉, ”y”), 〈〉)〉)〉))〉)

Extensible Markup Language (XML). Because an eventual move to XML
was clear from the beginning, all elements of the AST received a mapping to an
XML element or a combination of elements [5]. This is the AST of the example
mapped to XML (see also Appendix B) in an XML-pseudo format:

mathlang---step-+-step---dec-+-id---name---"0"

| ‘-cterm

|-step---dec-+-id---name---"s"

| |-cterm

5 | ‘-cterm

|-step---dec-+-id---name---"x"

| ‘-cterm

|-step---dec-+-id---name---"y"

| ‘-cterm

10 |-defcase-+-id---name---"a"

| |-inst---cid---name---"x"

| |-inst---cid---name---"0"

| ‘-inst---cid---name---"x"

‘-defcase-+-id---name---"a"

15 |-inst---cid---name---"x"

|-inst-+-cid---name---"s"

| ‘-inst---cid---name---"y"

‘-inst-+-cid---name---"s"

‘-inst-+-cid---name---"a"

20 |-inst---cid---name---"x"

‘-inst---cid---name---"y"
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3.4 Checker

After parsing is done and the AST is constructed, the checker routine can be
called to infer and check the types of all constructions and elements in the tree.
The checker that has been implemented follows the rules given in [14, pages
12–14]. In most cases, the rules directly correspond to a node, however the
IDENT-* rules are used throughout node checking.

Due to the shift to the Document Object Model (DOM) during implementation,
the completion of this checker was abandoned and therefore only implements a
part of the rules. Not (fully) implemented rules are: noun, adj, refinement,
adj-refinement, subnoun and adj-term.

An excerpt from the checking and type inference steps taken when processing
the AST of the example:

Line Checking and Type Inference Steps

1–10 Found a Block, check contained steps.
2 Found a Phrase, check contained expression.

Found a Dec, check arguments.
Found an Id “0”, check if already defined.
⇒ The Id “0” is undeclared and thus can be declared.
Found no category arguments for the Id.
⇒ The argument list type of the declaration is ().
Found a CTerm category.
⇒ The result type of the declaration is Term.

⇒ The declared Id “0” has type () → Term.
⇒ The Dec has type Dec(() → Term).

⇒ The Phrase has type Step.
...

...
9 Found a DefCase, check arguments.

Found an Id “a”, check if already defined.
Found an Inst, check arguments.

Found an Id “x”, check if already defined.
⇒ Id “x” is declared as () → Term.
Check for arguments.
⇒ The empty argument list type is ().

⇒ The Inst has type Term.
...

⇒ The by-case defined Id “a” has type (Term, Term) → Term.
⇒ The DefCase has type Def ((Term, Term) → Term).

10 . . .
1–10 ⇒ The Block has type Step.

Table 3.2: Checking and Type Inference of the Example Text

The feedback of the checker can notify the author of inconsistencies, ambiguities
or missing parts. Also, now that the tree is typed, it can be show in a different
way by the ASCII tree and DOT printers (see the next subsection).
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3.5 Printers

A printer takes the AST and generates output from it in a given format. In the
implementation four output printers are available:

1. Plain printer: attempts to regenerate the original text. This output
can be used to verify that the parser has understood what the author has
written.

2. XML printer: outputs a mapping of the AST into XML elements as
described by the DTD in Appendix B. This printer has been obsoleted by
the AST-to-DOM converter described in the next section.

3. Tree printer: outputs the AST as it can be found in the memory in a
comprehensible text (ASCII) format.

There are two types of trees that the printer can generate: the untyped
and the typed tree. The typed tree variant can obviously only be printed
once the checker has processed the tree.

4. DOT printer: a printer similar to the Tree printer, except that it gen-
erates the tree in the format of the DOT language [15]. This language
describes graphs (trees) that can for example be rendered graphically to
several formats (e.g. the PostScript format). The DOT printer will anno-
tate nodes in the tree with types if they are available (i.e. the checker has
processed the tree).

All printers are implemented using a recursing function on the tree that makes
a case distinction on each node. The output documents of each printer when
run on the AST of the example of this chapter can be found in Appendix D.

3.6 AST-to-DOM XML Converter

In Figure 3.2 on page 22 there is a bridge between the Plain Parser and the
DOM Graph. This bridge would allow for the plain syntax to be used in the
XML-centred framework. For this the DOM-to-DOM XML Converter was im-
plemented.

In general its implementation is almost equal to the DOT Printer (also gener-
ating a graph). Instead of printing nodes and edges to a file it uses calls to a
new library abstracting functionality2 to create MathLang-Core DOM graphs:

• create_element_with_children to create a node.

• create_element to create an empty leaf.

• create_element_with_text to create a leaf containing a string.

2Please refer to [7, Section 6.1] for more information about the MathLang DOM libraries.
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3.7 Programs

Currently, the MathLang source generates two programs: mathlang and
mathlang-convert.

• mathlang: A program similar to the old MathLang implementation. It
parses the document and runs the checker on it, both runs will give feed-
back if something is wrong with the document.

Usage: mathlang -plain <input file>

• matchlang-convert: A program that will parse a MathLang-Core docu-
ment in the plain syntax and convert it to other output types such as an
ASCII tree (typed and untyped), DOT (typed and untyped), plain syn-
tax, XML (normal and abbreviated). Checking and type-inference is only
done when required by the output type.

Usage:
mathlang-convert [-t <output type> ]

[-o <output file>] <input file>

The output type defaults to XML, the output file to STDOUT and the
input file to STDIN. Valid values for output types: dot, dot-typed, plain,
tree, tree-typed, xml, xml-dom and xml-abbr. The xml-dom output
type will activate the DOM-to-XML converter and uses the new DOM
implementation.



Chapter 4

Example

This chapter will explain the encoding of a part of the Chapter 1 (the intro-
duction and Section 1.1) of Graph Theory book written by Reinhard Diestel
[4]. The encoding presented below only captures mathematical notions from
the text, i.e. no side remarks about notation or use. Also not every part of the
encoding is discussed, just the more complicated parts. The original text and
the complete encoding is available in Appendix C.2.

The Preamble

During any encoding you will notice that a lot of variables, meta-variables,
terms, sets and functions are assumed to be known by the reader (i.e. defined
elsewhere or even outside the text). However, since the checking of a document
starts with a clean slate you will have to tell MathLang at least what the types
of these identifiers are.

It is a custom to place the declarations that are not mentioned in the text and
have no direct correlation to what is said in the text, at the top of the document.
The list of declarations at the start of an encoding is called the preamble. The
preamble is enclosed in a block so that it may be annotated by features at a
later stage.

Note that the complete encoding is given in the order of the original text except
for the preamble where lines are added when encountered during the encoding
process.

Constructors: MathLang has no set constructor ({x ∈ S | . . . }), but it is
easy to define them:

8 Set(dec( ‘a) , term) : set ;
Set ’ (dec( ‘a) , stat) : set ;

Note that there are two variants: the first collecting terms, the second collecting
set elements for which a statement is true.
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Binders: Some binders are used in the text as symbols ∀, ∃,
⋃

, ι, or in
natural language form: “for all”, “there exists”, “the union of”, and “the object
for which”.

12 f o ra l l (dec( ‘ i ) , stat) : stat ;
ex ists (dec( ‘ i ) , stat) : stat ;

14 iota (dec( ‘x) , term) : term ;
Union(dec( ‘ s ) , set) : term ;

Nouns, terms, sets: A lot of (hidden) nouns are used in the text as well as
terms and sets that may seem obvious, but still have to be made explicit for
MathLang:

18 natural number : noun;
real number : noun;

20 integer : noun;

22 empty set : set ;

24 0 : term ;
1 : term ;

26 2 : term ;
3 : term ;

28 e : term ;

As you can see, the numbers 0, 1, 2, etc. really have to be given a type before
they can be used later on.

Functions & predicates: Like hidden nouns there are also a lot of hidden
functions and predicates in the text like “and”, “if . . . then . . . ”, “the number
of elements of” some set S.

and(stat , stat) : stat ;
32 dis jo int (set , set) : stat ;

eq(term, term) : stat ;
34 eq set (set , set) : stat ;

element of(term, term) : term ;
36 geq(term, term) : stat ;

i f f (term, term) : stat ;
38 in (term, set) : stat ;

impl(stat , stat) : stat ;
40 intersect (set , set) : set ;

Sometimes the same name is used for different types. In MathLang identifiers
can not be polymorphic therefore a different name has to be chosen. Compare
equality (=) for terms and sets. The identifiers are encoded using the names eq
and eq set respectively.
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Chapter 1: The Basics

The chapter 1 introduction starts with a few paragraphs that do not concern
mathematics and are therefore ignored. We start at the following sentence: “By
N we denote the set of natural numbers, including zero.” Here natural number
is a noun, already defined in the preamble. We introduce a set for this noun (N)
and explicitly mention that 0 is a member of this set:

N : set(natural number ) ;
54 0 : N;

“The set Z/nZ of integers modulo n is denoted by Zn”. This set definition
requires the set of integers (Z) similar to N (line 53). Since MathLang can’t
handle mathematical symbols we need to encode the notation Zn. In this nota-
tion n is a hidden natural number argument (the module factor), so we define
Z mod(n) as a function producing a set of integers modulo the argument n. The
set is constructed using the Set constructor predefined in the preamble. This
binder takes a declaration, in this case the declaration of the dummy integer
variable z, and collects all integer values module n.

Z : set( integer ) ;
56

n : natural number |>
58 { Z mod(n) := Set(z : Z, mod(z , n)) ;

(Here the natural number n is kept local to the definition of the set function.)

The next part of the sentence, “its elements are written as i := i + nZ.”, is not
encoded since it is purely about notation.

“For a real number x we denote by bxc the greatest integer ≤ x, and by dxe
the least integer ≥ x.” This sentence talks about two functions for some real
number x. We put the fact that x is a real number in the local scope and define
the functions in the body.

Since these functions return a specific real number, we use the ι-binder ( iota ).
This binder is used to return a specific object for which something holds. In the
case of bxc this is the specific integer that is smaller than x but that is greater
than any (∀) other integer smaller than x. In other words, if an integer smaller
than this specific x is found, then (⇒) it is smaller then this bxc:

x : real number |>
62 { f loor (x) :=

iota ( i : integer , and( leq ( i , x) ,
64 f o ra l l ( j : integer , impl( leq ( j , x) , leq ( j , i ) )))) ;

c e i l (x) :=
66 iota ( i : integer , and(geq( i , x)

f o ra l l ( j : integer , impl(geq( j , x) , geq( j , i ) )))) ;

The following sentence uses some hidden notion of a logarithm with a base:
“Logarithms written as ‘log’ are taken at base 2; the natural logarithm will
be denoted by ‘ln’.”. We declare the logarithm-with-base as some function and
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instantiate it for the definitions of log x and lnx. Note that this also ends the
need for the local scope of x, so the body is closed is after the definitions:

68 log with base(term, term) : term ;
log(x) := log with base (2 , x ) ;

70 ln (x) := log with base(e , x ) ; };

Now we encounter a more complex sentence: “A setA = {A1, . . . , Ak} of disjoint
subsets of a set A is a partition of A if the union

⋃
A of all the sets Ai ∈ A is

A and Ai 6= ∅ for every i.”. This sentence establishes several things: some set
of disjoint subsets of A (A), what a partition of a set is, and that this set A is
a subset of A. The first two are definitions, while the latter is a statement.

For the definitions we need a local scope to declare A and the elements of the
set of subsets of A. These subsets are denoted by indexes which can be seen as
a function from an index to a set (A : N → P(A)). Besides that we need the
number of subsets k (some natural number) and the statement that all Ai are
subsets of A and disjoint with each other:

{ A : set ; A (term) : set ; k : natural number ;
73 f o ra l l ( i : range(1 , k) ,

and(subset(A ( i ) , A) ,
75 f o ra l l ( j : range(1 , k) , d i s jo int (A ( i ) , A ( j ))))) ; } |>

The use of the function range in this definition is to signify a range of (natural)
numbers: range (1, k) is an encoding of {1, . . . , k}.

Now, for the body we need the partition of A (part A ) to be this set of disjoint
subsets:

{ part A := Set( i : range(1 , k) , A ( i )) ;

We also need to define the partition of function, however we can not do this for
A. This would result in the definition of partition of being tied directly to this
specific partition of A, instead of any partition of the set A. For this purpose
we introduce set B and subsets Bi with similar properties to the set A:

{ B : set ; B (term) : set ;
78 f o ra l l ( i : range(1 , k) ,

and(subset(B ( i ) , B) ,
80 f o ra l l ( j : range(1 , k) , d i s jo int (B ( i ) , B ( j ))))) ; } |>

{ part it ion of (B, A) :=
82 and(eq(A, Union( i : range(1 , k) , B ( i ))) ,

f o ra l l ( i : range(1 , k) , not(eq(B ( i ) , empty set )))) ; };

The last part is the statement that A (part A ) is a partition of A:

part it ion of (part A , A) ;

The encoding of the sentence: “Another partition {A′
1, . . . , A

′
l} of A refine the

partition A if each A′
i is contained in some Aj .” is now very trivial since it is
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similar to the encoding above. We introduce the set A′, the subsets A′
i in a local

scoping and give the partition A′ and the definition of refines in the body.

The fact that some subset is contained in the other is encoded with the math-
ematical notion of ⊆ ( subset ). Also ‘some Aj ’ is not encoded by putting the
declaration of Aj in the local scope, as has been done before, but by using ∃
( exists ).

{ A’ : set ; A’ (term) : set ; } |>
87 { part A ’ := Set( i : range(1 , k) A’ ( i )) ;

ref ines (part A ’ , part A) :=
89 f o ra l l ( i : range(1 , k) ,

ex ists ( j : range(1 , k) , subset(A’ ( i ) , A ( j )))) ; };

The last few lines of the introduction are not relevant for the rest of the encoding
and are left out of the explanation. The encoding is given in lines 92–95 of
Appendix C.2.2.

Section 1.1: Graphs

This section starts with the definition of the notion (noun) graph: “A graph is
a pair G = (V,E) of sets such that E ⊆ [V ]2”. Most of the time a graph is
instantiated with some given set of vertices V and set of edges E. Because of
this we will give the noun two parameters V’ and E’, being declared as arbitrary
sets for the purpose of this definition. A piece of a sentence later in the text is
also added to this definition: “we shall always assume tacitly that V ∩E = ∅.”.

{ V’ : set ; E’ : set ; } |>
100 graph(V’ , E’) :=

Noun { V := V’ ;
102 E := E’ ;

subset( sel f .E, k set of subsets (2 , sel f .V)) ;
104 eq set ( intersection ( sel f .V, sel f .E) , empty set ) ; };

The prime (’) is used in the parameters of the graph definition to prevent a clash
with the identifiers of the noun specification.

During the entire section the identifiers V , E and G are constantly used, so we
put them in a local scoping and the rest of the section in the body:

{ V : set ; E : set ; G : graph(V, E) ; } |>

Next, the text specifies what vertices and edges are: “The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are its edges (or
lines).”. The encoding can be done quite directly. It defines vertex and edge as
nouns of which no properties are given and introduces some aliases.
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{ vertex : noun;
108 node := vertex ;

point := vertex ;
110 v : G.V |> v : vertex ;

112 edge : noun;
l ine := edge ;

114 e : G.E |> e : edge ;

N.B. When a vertex v is to be a member of the set V of the graph V , note that
we use G.V and not V, since the latter has no relation to the graph. It is just a
set.

The relation between V and G.V is mentioned later in the text: “A graph with
vertex set V is said to be a graph on V . The vertex set of a graph G is referred
to as V (G), its edge set as E(G).”. Except for a small problem the translation
is easy: the text mentions V (G) as some function on G, however V is already
declared as an identifier without arguments (i.e. type: () → Term), so a different
name (V’) is used:

on(V, G) := eq set (V, G.V);
117 vertex set (G) := G.V;

V’(G) := vertex set (G) ;
119 edge set(G) := G.E;

E’(G) := edge set(G) ;

The last thing said about the connection between V and G.V is related to the time
I used V’ as a parameter of the graph definition. When a graph is instantiated,
the value of the vertex set parameter (V’) is set to the V property of the noun.
So, even if a graph is instantiated as H = graph(W, F) for some set W , the vertex
set of that graph is still referred to with H.V. This is also mentioned in the text:
“These conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W,F ) is still referred to as V (H), not as W (H).”.

The following part of the text gives more definitions in a similar fashion, so we’ll
skip ahead to line 193 where there is more complex encoding.

Consider the following paragraph about isomorphic and isomorphism: “Let G =
(V,E) and G′ = (V ′, E′) be two graphs. We call G and G′ isomorphic, and write
G ' G′, if there exists a bijection ϕ : V → V ′ with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′

for all x, y ∈ V . Such a map ϕ is called an isomorphism;”.

First, for the definition we need an addition graph G′ and a bijection. Then we
need to define isomorphism as a special bijection on vertex sets of two graphs
before we can say what being isomorphic means. In this definition we need the
if-and-only-if ( iff ) and edge (ed) statements. The latter specifies that for two
vertices v1 and v2 of a graph the edge (v1, v2) is in the set of edges (see lines
160–161 of Appendix C.2.2).
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{ V’ : set ; E’ : set ; G’ : graph(V’ , E’ ) ; phi : bi ject ion (V, V’ ) ; } |>
195 { isomorphism(G, G’) :=

Noun { f o ra l l (x : G.V,
197 f o ra l l (y : G.V,

i f f ( in (ed(x , y) , G.E) ,
199 in (ed(phi(x) , phi (y)) , G’ .E)))) ; };

Now that the isomorphism is defined we can say what it is for the graphs G and
G′ to be isomorphic:

201 exists (phi : term, phi : isomorphism(G, G’)) |>
isomorphic(G, G’ ) ; };

Consequently, the encoding of the definition of automorphism is simple now. It
is defined in the text by: “if G = G′, it is called an automorphism.”. So this is
just a simpler form of the definition of isomorphism. The author means to say
that we should reread the definition of isomorphism with G substituted for G′

(and also implicitly V for V ′).

{ phi : bi ject ion (V, V); } |>
205 automorphism(G) :=

Noun { f o ra l l (x : G.V,
207 f o ra l l (y : G.V,

i f f ( in (ed(x , y) , G.E) ,
209 in (ed(phi(x) , phi (y)) , G.E)))) ; };

The rest of the encoding of the section is left as an exercise for the reader. Note
that the encoding stops on page 3 at the end of the sentence: “[. . . ] then G′ is
a proper subgraph of G.”. For this encoded and a transcription of the original
text, please refer to Appendix C.2.
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Conclusion

Hopefully this report has shown that MathLang is a simple, flexible and clear
language. It has many possibilities and I am sure that it will be able to do more
things than we can think of now. The current implementation described in this
report is just a start.

The current implementation can: parse a MathLang-Core text, partially check
this text, convert it to the XML format, show the types of the elements in
the tree, provide feedback during parsing and checking. However, because the
checker is not finished, complex nouns and adjectives are not checked and typed.
More complex expressions like refinements and sub-nouns are not possible either.

Due to the fact that MathLang keeps changing because it has to be adapted
to deal with new mathematical texts, a new implementation needed to take
place. This is the reason that, while earlier checkers implemented for earlier
versions of the language were completed, this checker is not finished. In the new
architecture a new checker will do its work that is more resilient to language
changes, as is the whole architecture.

Due to the AST-to-DOM converter, the components dealing with the plain
syntax can be reused in the new architecture. This means that MathLang-Core
documents can be authored using both an XML or a plain syntax editor.

5.1 Future Work

Some things are still missing from the plain syntax part of the framework:

• There is no component to convert the DOM graph back to the AST tree.
If this would be possible, an author using the XML syntax could see a
“plain view” on his/her text.

• A new checker for the DOM graph should be written that provides plain
syntax feedback to the author. This will make the system backward com-
patible with what is possible now.
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• Some printers that originally used the AST as input should be adapted to
use the DOM graph.

Besides the plain syntax there are more areas in which work can continue:

• A TeXmacs interface could be constructed so that the mathematician
doesn’t have to deal with both the plain syntax or the XML syntax. The
mathematician uses it tow write texts and receives feedback about the
grammatical correctness and/or types inside the TeXmacs editor.

• More features should be implemented to annotate parts of the MathLang-
Core document so that eventually output can be generated that interacts
with a proof system. However, one can also think of other kind of features.
For example a feature generating (or reconstructing) a “CML view” of the
MathLang text.
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Plain Syntax Grammar

This appendix contains a verbatim copy of the plain syntax grammar of MathLang-
Core as given in [8] (with notes in [6]).

Document

〈document〉→ 〈step-seq〉

Sequences

〈step-seq〉→ { 〈step〉 ‘;’ }
〈exp-seq〉→ [ 〈exp〉 { ‘,’ 〈exp〉 } ]

〈cat-seq〉→ [ 〈cat〉 { ‘,’ 〈cat〉 } ]

〈ident-seq〉→ [ 〈ident〉 { ‘,’ 〈ident〉 } ]

Steps

〈step〉→ 〈exp〉
| 〈label-step〉
| 〈block-step〉
| 〈definition-step〉
| 〈local-scope-step〉
| 〈referencing-step〉

〈label-step〉→ 〈labelling〉 〈step〉
〈block-step〉→ ‘{’ 〈step-seq〉 ‘}’

〈local-scope-step〉→ 〈local-scope-cont〉 ‘|>’ 〈local-scope-concl〉
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〈definition-step〉→ 〈def 〉 | 〈def-match-case〉
〈referencing-step〉→ ‘ref ’ 〈label〉

Labelling

〈labelling〉→ ‘label’ 〈label〉

Definitions

〈def 〉→ 〈cident〉 [ ‘(’ 〈ident-seq〉 ‘)’ ] ‘:=’ 〈exp〉
〈def-match-case〉→ 〈ident〉 [ ‘(’ 〈exp-seq〉 ‘)’ ] ‘∼=’ 〈exp〉

Local Scoping

〈local-scope-cont〉→ 〈step〉
〈local-scope-concl〉→ 〈step〉

Expressions

〈exp〉→ 〈inst-exp〉
| 〈decl-exp〉
| 〈sub-noun-adj-exp〉
| 〈refinement-exp〉
| ‘(’ 〈exp〉 ‘)’
| ‘Noun’ [ ‘{’ 〈step-seq〉 ‘}’ ]
| ‘Adj’ ‘(’ 〈exp〉 ‘)’ [ ‘{’ 〈step-seq〉 ‘}’ ]
| ‘self ’ | ‘super’

〈inst-exp〉→ 〈cident〉 [ ‘(’ 〈exp-seq〉 ‘)’ ]

〈decl-exp〉→ 〈elementhood-decl〉 | 〈decl〉
〈sub-noun-adj-exp〉→ 〈ident〉 ‘<-’ 〈exp〉
〈refinement-exp〉→ 〈exp〉 〈exp〉

Declarations

〈elementhood-decl〉→ 〈ident〉 [ ‘(’ 〈cat-seq〉 ‘)’ ] ‘:’ 〈exp〉
〈decl〉→ 〈ident〉 [ ‘(’ 〈cat-seq〉 ‘)’ ] ‘:’ 〈cat〉
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Categories

〈cat〉→ ‘term’ [ ‘(’ 〈exp〉 ‘)’ ]
| ‘noun’ [ ‘(’ 〈exp〉 ‘)’ ]
| ‘set’ [ ‘(’ 〈exp〉 ‘)’ ]
| ‘adj’ ‘(’ 〈exp〉 ‘,’ 〈exp〉 ‘)’
| ‘dec’ ‘(’ 〈cat〉 ‘)’
| ‘stat’
| 〈cvar〉

Complex identifiers

〈cident〉→ { 〈exp〉 ‘.’ } 〈ident〉

Atoms

〈label〉→ ‘#’ denumerably infinite set of labels

〈cvar〉→ ‘ ‘ ’ denumerably infinite set of category variables

〈ident〉→ denumerably infinite set of identifiers
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XML Syntax Document
Type Definition

Below follows the DTD of the XML Syntax for MathLang-Core version 2.3.
The external ID for usage of this DTD in MathLang-Core documents (see [17,
section 2.8]) is: http://www.macs.hw.ac.uk/∼paulvt/mlc23.dtd.

Note that in the following DTD the substructure of the elements type, error
env, and location is left undefined by specifying ANY as the content. The
structure will be defined at a later stage and is irrelevant for this report.

1 <?xml version=”1.0” encoding=”UTF−8”?>
<!−−

DTD for MathLang−Core XML syntax , version 2.3
ULTRA group

6 $ I d : mlc23 . dtd , v 1.3 2006/01/04 11 :52:54 paulvt Exp $

−−>

<!−− En t i t i e s used in the d e f i n i t i o n −−>
11 <!ENTITY % exp

”( adj | dec | i n s t | noun | ref inement | s e l f | subnoun | super )”>

<!ENTITY % category
”( cterm | cset | cnoun | cadj | cs ta t | cdec | cvar )”>

16

<!−− ==============−−>
<!−− The d e f i n i t i o n −−>
<!−− ==============−−>

21

<!−− Document/Root element −−>
<!ELEMENT mathlang ( meta? , step )>
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<!−− Node meta data −−>
26 <!ELEMENT meta ( type ? , e r r o r ? , env ? , l oca t i on ? )>

<!ELEMENT type ANY>
<!ATTLIST type

version CDATA #IMPLIED
31 timestamp CDATA #IMPLIED

f i r s t v e r s i o n CDATA #IMPLIED
f i r s t t imestamp CDATA #IMPLIED>

<!ELEMENT e r r o r ANY>
36 <!ATTLIST e r r o r

version CDATA #IMPLIED
timestamp CDATA #IMPLIED
f i r s t v e r s i o n CDATA #IMPLIED
f i r s t t imestamp CDATA #IMPLIED

41 i d CDATA #IMPLIED
r e f CDATA #IMPLIED>

<!ELEMENT env ANY>
<!ATTLIST env

46 version CDATA #IMPLIED
timestamp CDATA #IMPLIED
f i r s t v e r s i o n CDATA #IMPLIED
f i r s t t imestamp CDATA #IMPLIED>

51 <!ELEMENT l o ca t i on ANY>
<!ATTLIST l o ca t i on

version CDATA #IMPLIED
timestamp CDATA #IMPLIED
f i r s t v e r s i o n CDATA #IMPLIED

56 f i r s t t imestamp CDATA #IMPLIED
s t a r t CDATA #REQUIRED
end CDATA #REQUIRED
f i l e CDATA #IMPLIED>

61 <!−− Steps −−>
<!ELEMENT l a b e l ( meta? , name )>

<!ELEMENT l o c a l ( step? )>

66 <!ELEMENT phrase ( meta? , ( %exp ; | def | defcase ) )>

<!ELEMENT step ( meta? , l a b e l ∗ ,
( step∗ | ( loca l , step ) | phrase ) )>

71 <!−− Pseudo expres s ions −−>
<!ELEMENT def ( meta? , cid , id ∗ , %exp ; )>

<!ELEMENT defcase ( meta? , id , (%exp;)+ )>

76 <!−− Express ions −−>
<!ELEMENT adj ( meta? , %exp ; , step )>
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<!ELEMENT dec ( meta? , id , (%category ; )∗ , (%exp ; )? )>

81 <!ELEMENT i n s t ( meta? , cid , (%exp ; )∗ )>

<!ELEMENT noun ( meta? , step )>

<!ELEMENT r e f ( meta? , name )>
86

<!ELEMENT ref inement ( meta? , %exp ; , %exp ; )>

<!ELEMENT s e l f ( meta? )>

91 <!ELEMENT subnoun ( meta? , id , %exp ; )>

<!ELEMENT super ( meta? )>

<!−− Categor ies −−>
96 <!ELEMENT cterm ( meta? , (%exp ; )? )>

<!ELEMENT cset ( meta? , (%exp ; )? )>

<!ELEMENT cnoun ( meta? , (%exp ; )? )>
101

<!ELEMENT cadj ( meta? , %exp ; , (%exp ; )? )>

<!ELEMENT cs ta t ( meta? )>

106 <!ELEMENT cdec ( meta? , %category ; )>

<!ELEMENT cvar ( meta? , name )>

<!−− I d e n t i f i e r s −−>
111 <!ELEMENT i d ( meta? , name )>

<!ELEMENT c id ( meta? , (%exp ; )∗ , name )>

<!−− Names −−>
116 <!ELEMENT name ( #PCDATA )>



Appendix C

Example Encodings

This appendix contains MathLang encodings in the plain syntax of which ex-
cerpts are used in the document.

C.1 Simple Example

This example is used to explain the plain syntax in Section 2.4.

(∗∗∗∗ Simple Examples for MathLang−Core 2.3 ∗∗∗∗)

(∗∗∗ EXPRESSIONS ∗∗∗)
4

(∗∗ Declarations ∗∗)
(∗ Simple ident i f i e r declarations ∗)
true : term ;
nat : noun;

9 N : set(nat ) ;

(∗ Declaration of ident i f i e r s with arguments ∗)
S(term) : term ;
not(term) : term ;

14 =(term, term) : stat ;

(∗ Binder declarations ∗)
f o ra l l (dec( ‘x) , stat) : stat ;
ex ists (dec( ‘x) , stat) : stat ;

19

(∗ Elementhood declarations ∗)
0 : nat ;
n : N;

24 (∗∗ Definitions ∗∗)
(∗ Simple def in it ion ∗)
fa l se := not( true ) ;
is nat (n) := exists (m : N, =(n, m)) ;
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29 (∗ Definition by matching case ∗)
posit ive (0) ˜= fa lse ;
posit ive (S(n)) ˜= true ;

(∗∗ Nouns & Adjectives ∗∗)
34 (∗ Simple nouns & adjectives ∗)

nat := Noun;
odd := Adj (nat ) ;
even := Adj (nat ) ;

39 (∗ More sophisticated noun & adjectives ∗)
l ine := Noun { length : term ; };
f i n i t e := Adj ( l ine ) { exists ( l : N, =(sel f . length , l ) ) ; };

(∗ Refinement ∗)
44 line segment := f i n i t e l ine ;

two fold := even nat ;

(∗ Sub−noun ∗)
line segment <− l ine ;

49

(∗ Adjective statement ∗)
l : line segment ;
l <− f i n i t e ;

54

(∗∗∗ STRUCTURE ∗∗∗)

(∗∗ Phrases ∗∗)
f o ra l l (k : N,

59 f o ra l l ( l : N, =( f (k) , f (m) ))) ;
(∗ All of the above ∗)

(∗∗ Blocks ∗∗)

64 { i s zero (0) ˜= true ;
is zero (S(n)) ˜= fa lse ; };

(∗∗ Local scoping ∗∗)

69 { n : N; or(term, term) : stat ; } |>
or( not( is zero (n)) , is zero (n) ) ;

(∗∗ Labels & References ∗∗)

74 label #L1 1 : nat ;

ref #L1 |> 1 : odd nat ;
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C.2 Reinhard Diestel — Graph Theory

This is the main example of Chapter 4. It is an encoding into the MathLang
plain syntax of the last lines of the Chapter 1 introduction and a part of Sec-
tion 1.1 of Reinhard Diestel’s Graph Theory [4, pages 1–3].

C.2.1 Original Text

This a transcription of the original text where sentences or paragraphs that have
not been translated have been left out (marked by [. . . ]).

1. The Basics

[. . . ] By N we denote the set of natural numbers, including zero.
The set Z/nZ of integers modulo n is denoted by Zn; its elements
are written as i := i+nZ. For a real number x we denote by bxc the
greatest integer ≤ x, and by dxe the least integer ≥ x. Logarithms
written as ‘log’ are taken at base 2; the natural logarithm will be
denoted by ‘ln’. A set A = {A1, . . . , Ak} of disjoint subsets of a set
A is a partition of A if the union

⋃
A of all the sets Ai ∈ A is A and

Ai 6= ∅ for every i. Another partition {A′
1, . . . , A

′
l} of A refine the

partition A if each A′
i is contained in some Aj . By [A]k we denote

the set of all k-element subsets of A. Sets with k elements will be
called k-sets; subsets with k elements are k-subsets.

1.1 Graphs

A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; [. . . ] we
shall always assume tacitly that V ∩ E = ∅. The elements of V are
the vertices (or nodes, or points) of the graph G, the elements of E
are its edges (or lines). [. . . ]

A graph with vertex set V is said to be a graph on V . The vertex
set of a graph G is referred to as V (G), its edge set as E(G). These
conventions are independent of any actual names of these two sets:
the vertex set W of a graph H = (W,F ) is still referred to as V (H),
not as W (H). [. . . ]

The number of vertices of a graph G is its order, [. . . ] its number of
edges [. . . ] Graphs are finite, infinite, countable and so on according
to their order. [. . . ]

For the empy graph (∅, ∅) we simply write ∅. A graph of order 0 or
1 is called trival. [. . . ]

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v.
The two vertices incident with an adge are its endvertices or ends,
and an edge joins its ends. [. . . ]

Two vertices x, y of G are adjacent, or neighbours, if xy is an edge
of G. Two edges e 6= f are adjacent if they have an end in common.
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If all the vertices of G are pairwise adjacent, then G is complete. A
complete graph on n vertices is a Kn; a K3 is called a triangle.

Pairwise non-adjacent vertrices or edges are called independent. [. . . ]
a set of vertrices or of edges is independent (or stable) if no two of
its elements are adjacent.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We call G and G′

isomorphic, and write G ' G′, if there exists a bijection ϕ : V → V ′

with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′ for all x, y ∈ V . Such a map ϕ
is called an isomorphism; if G = G′, it is called an automorphism.
[. . . ]

A class of graphs that is closed under isomorphism is called a graph
property. [. . . ] ‘containing a triangle’ is a graph property: if G
contains three pairwise adjacent vertrices then so does every graph
isomorphic to G. A map taking graphs as arguments is called a
graph invariant if it assigns equal values to isomorphic graphs. [. . . ]

We set G ∪G′ := (V ∪ V ′, E ∪ E′) and G ∩G′ := (V ∩ V ′, E ∩ E′).
If G ∩ G′ = ∅, then G and G′ are disjoint. If V ⊆ V and E ⊆ E′,
then G′ is a subgraph of G (and G a supergraph of G′), written as
G′ ⊆ G. [. . . ] we say that G contains G′. If G′ ⊆ G and G′ 6= G,
then G′ is a proper subgraph of G. [. . . ]

C.2.2 Encoding in Plain Syntax

(∗ Reinhard Diestel − Graph Theory ∗)
(∗ Original Author : Reinhard Diestel ∗)
(∗ Author Encoding in MathLang−Core : Paul van Tilburg ∗)

4

(∗∗ Preamble ∗∗)
{

(∗ Constructors ∗)
Set(dec( ‘a) , term) : set ;

9 Set ’ (dec( ‘a) , stat) : set ;

(∗ Binders ∗)
f o ra l l (dec( ‘ i ) , stat) : stat ;
ex ists (dec( ‘ i ) , stat) : stat ;

14 iota (dec( ‘x) , term) : term ;
Union(dec( ‘ s ) , set) : term ;

(∗ Nouns, terms , sets ∗)
natural number : noun;

19 real number : noun;
integer : noun;

empty set : set ;

24 0 : term ;
1 : term ;
2 : term ;
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3 : term ;
e : term ;

29

(∗ Functions/ ident i f i e r s ∗)
and(stat , stat) : stat ;
d i s jo int (set , set) : stat ;
eq(term, term) : stat ;

34 eq set (set , set) : stat ;
element of(term, term) : term ;
geq(term, term) : stat ;
i f f (term, term) : stat ;
in (term, set) : stat ;

39 impl(stat , stat) : stat ;
intersect (set , set) : set ;
leq (term, term) : stat ;
not(stat) : stat ;
nr of elements of (set) : term ;

44 or(stat , stat) : stat ;
refer to (set , set) : stat ;
range(term, term) : set ;
subset(set , set) : stat ;
superset (set , set) : stat ;

49 union(set , set) : set ;
};

(∗∗ Chapter 1: The Basics ∗∗)
N : set(natural number ) ;

54 0 : N;
Z : set( integer ) ;

n : natural number |>
{ Z mod(n) := Set(z : Z, mod(z , n)) ;

59 (∗ MISSING: notation of overl ine ( i ) := i + nZ ∗) };

x : real number |>
{ f loor (x) :=

iota ( i : integer , and( leq ( i , x) ,
64 f o ra l l ( j : integer , impl( leq ( j , x) , leq ( j , i ) )))) ;

c e i l (x) :=
iota ( i : integer , and(geq( i , x)

f o ra l l ( j : integer , impl(geq( j , x) , geq( j , i ) )))) ;
log with base(term, term) : term ;

69 log(x) := log with base (2 , x ) ;
ln (x) := log with base(e , x ) ; };

{ A : set ; A (term) : set ; k : natural number ;
f o ra l l ( i : range(1 , k) ,

74 and(subset(A ( i ) , A) ,
f o ra l l ( j : range(1 , k) , d i s jo int (A ( i ) , A ( j ))))) ; } |>

{ part A := Set( i : range(1 , k) , A ( i )) ;
{ B : set ; B (term) : set ;

f o r a l l ( i : range(1 , k) ,
79 and(subset(B ( i ) , B) ,

f o ra l l ( j : range(1 , k) , d i s jo int (B ( i ) , B ( j ))))) ; } |>
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{ part it ion of (B, A) :=
and(eq(A, Union( i : range(1 , k) , B ( i ))) ,

f o ra l l ( i : range(1 , k) , not(eq(B ( i ) , empty set )))) ; };
84 part it ion of (part A , A) ;

{ A’ : set ; A’ (term) : set ; } |>
{ part A ’ := Set( i : range(1 , k) A’ ( i )) ;

ref ines (part A ’ , part A) :=
89 f o ra l l ( i : range(1 , k) ,

ex ists ( j : range(1 , k) , subset(A’ ( i ) , A ( j )))) ; };

k set of subsets (k , A) :=
Set ’ (A’ : set , and(subset(A’ , A) , eq(nr of elements of (A’) , k))) ;

94 k set (k , A) := Noun { eq(nr of elements of (A) , k) ; }
k set of subsets <− k set ;

};

(∗∗ Section 1.1: Graphs ∗∗)
99 { V’ : set ; E’ : set ; } |>

graph(V’ , E’) :=
Noun { V := V’ ;

E := E’ ;
subset( sel f .E, k set of subsets (2 , sel f .V)) ;

104 eq set ( intersection ( sel f .V, sel f .E) , empty set ) ; };

{ V : set ; E : set ; G : graph(V, E) ; } |>
{ vertex : noun;

node := vertex ;
109 point := vertex ;

v : G.V |> v : vertex ;

edge : noun;
l ine := edge ;

114 e : G.E |> e : edge ;

on(V, G) := eq set (V, G.V);
vertex set (G) := G.V;
V’(G) := vertex set (G) ;

119 edge set(G) := G.E;
E’(G) := edge set(G) ;

{ W : set ; F : set ; H : graph(W, F) ; } |>
{

124 W’(term) : set ;
vertex set (H) ˜= V’(G);
vertex set (H) ˜= not(W’(G)) ;
};

129 v : vertex ;
e : edge ;

nr of vert ices (G) := nr of elements (G.V);
order(G) := nr of vert ices (G) ;

134 nr of edges (G) := nr of elements (G.E) ;
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f i n i t e := Adj(graph ) ;
in f inte := Adj(graph ) ;
countable := Adj(graph ) ;

139

empty := Adj(graph) { and(eq set (super .V, empty set ) ,
eq set (super .E, empty set )) ; };

empty graph := empty graph ;

144 t r i va l := Adj(graph) { or(eq(order(super) , 0) , eq(order(super) , 1)); };

incident (v , e) := element of(v , e ) ;
at(e , v) := incident (v , e ) ;

149 { v1 : vertex ; v2 : vertex ;
incident (v1 , e ) ; incident (v2 , e ) ; not(eq(v1 , v2)) ; } |>
{ endvertex(term, term) : stat ;

jo ins (term, term, term) : stat ;

154 end(v , e) := endvertex(v , e ) ;
endvertex(v1 , e ) ;
endvertex(v2 , e ) ;
jo ins (e , v1 , v2) ; };

159 (∗ MISSING: notation of xy , X−Y edge , E(X, Y) , E(v) ∗)
{ x : vertex ; y : vertex ; } |>

ed(x , y) := Noun { v1 := x ; v2 := y ; };

{ x : G.V; y : G.V; } |>
164 { adjacent v(x , y) := element of(ed(x , y) , G.E) ;

neighbours(x , y) := adjacent v(x , y ) ;
};

{ e : G.E; f : G.E; not(eq(e , f )) ; } |>
169 adjacent e(e , f ) := exists (w : vertex , and(end(w, e) , end(w, f ))) ;

complete(G) :=
Adj(graph) { f o ra l l (v1 : super .V,

f o ra l l (v2 : super .V, adjacent v(v1 , v2))) ; };
174

K (n) := Noun { G : complete graph ; eq(nr of elements (G.V) , n) ; };
tr iangle := K (3);

{ v1 : vertex ; v2 : vertex ; } |>
179 independant v(v1 , v2) := not(adjecent v(v1 , v2)) ;

{ e1 : edge ; e2 : edge ; } |>
independant e(v1 , v2) := not(adjecent e(e1 , e2 )) ;

184 independant set v(V) :=
fo ra l l (v1 : V,

fo ra l l (v2 : V, not(adjacent v(v1 , v2)))) ;
stable v (V) := independant set v(V);
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189 independant set e(E) :=
fo ra l l (e1 : E,

f o ra l l (e2 : E, not(adjacent e(e1 , e2 )))) ;

bi ject ion (term, term) : noun;
194 { V’ : set ; E’ : set ; G’ : graph(V’ , E’ ) ; phi : bi ject ion (V, V’ ) ; } |>

{ isomorphism(G, G’) :=
Noun { f o ra l l (x : G.V,

fo ra l l (y : G.V,
i f f ( in (ed(x , y) , G.E) ,

199 in (ed(phi(x) , phi (y)) , G’ .E)))) ; };

ex ists (phi : term, phi : isomorphism(G, G’)) |>
isomorphic(G, G’ ) ; };

204 { phi : bi ject ion (V, V); } |>
automorphism(G) :=

Noun { f o ra l l (x : G.V,
fo ra l l (y : G.V,

i f f ( in (ed(x , y) , G.E) ,
209 in (ed(phi(x) , phi (y)) , G.E)))) ; };

graph property :=
Noun { class of graphs : set(graph(V, E)) ;

ex ists (phi : isomorphism ,
214 f o ra l l (g 1 : class of graphs ,

f o ra l l (g 2 : class of graphs , isomorphic(g 1 , g 2 )))) ; };

pairwise adjacent (term, term, term) : stat ;
containing a triangle : graph property ;

219 containing a triangle . class of graph :=
Set ’ (G : graph(V, E) ,

eq(nr elements of (Set ’ (v1 : G.V,
Set ’ (v2 : G.V,

Set ’ (v3 : G.V,
224 pairwise adjacent (v1 , v2 , v3))))) , 3));

graph invariant :=
Noun { map(term) : term ; (∗ map(graph) : term ∗)

f o ra l l (G : graph(V, E) ,
229 f o ra l l (G’ : graph(V’ , E’) ,

and( isomorphic(G, G’) , eq(map(G) , map(G’ ) ) ) ) ) ; };

{ V’ : set ; E’ : set ; G’ : graph(V’ , E’ ) ; } |>
{ union gr(G, G’) := graph(union(G.V, G’ .V) , union(G.E, G’ .E)) ;

234 intersect gr (G, G’) := graph( intersect (G.V, G’ .V) , intersect (G.E, G’ .E)) ;
d i s jo int (G, G’) := eq( intersect gr (G, G’) , empty graph) ;
subgraph(G’ , G) := and(subset(G’ .V, G.V) , subset(G’ .E, G.E)) ;
supergraph(G, G’) := subgraph(G’ , G) ;
contains(G, G’) := subgraph(G’ , G) ;

239 proper subgraph(G’ , G) := and(subgraph(G’ , G) , not(eq(G, G’ ) ) ) ;
};

};



Appendix D

Implementation Output
Documents

This appendix contains the output documents generated by the printers de-
scribed in Section 3.5.

D.1 Plain Document

{
0 : term ;
s (term) : term ;

4 x : term ;
y : term ;
a(x , 0) ˜= x ;
a(x , s(y)) ˜= s(a(x , y )) ;

};

D.2 XML Document

<?xml version=”1.0” encoding=”UTF−8”?>
2 <!DOCTYPE mathlang SYSTEM ”ht tp : //www.macs .hw. ac . uk/˜paulvt/mathlang/mlc23 . dtd”>

<mathlang>
<step>
<step>
<dec>

7 <i d> <name>0</name> </ id>
<cterm/>

</dec>
</step>
<step>

12 <dec>
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<i d> <name>s</name> </ id> <cterm/>
<cterm/>

</dec>
</step>

17 <step>
<dec>
<i d> <name>x</name> </ id>
<cterm/>

</dec>
22 </step>

<step>
<dec>
<i d> <name>y</name> </ id>
<cterm/>

27 </dec>
</step>
<defcase>
<i d> <name>a</name> </ id>
<i n s t>

32 <c id> <name>x</name> </c id>
</ i n s t>
<i n s t>
<c id> <name>0</name> </c id>

</ i n s t>
37 <i n s t>

<c id> <name>x</name> </c id>
</ i n s t>

</defcase>
<defcase>

42 <i d> <name>a</name> </ id>
<i n s t>
<c id> <name>x</name> </c id>

</ i n s t>
<i n s t>

47 <c id> <name>s</name> </c id>
<i n s t>
<c id> <name>y</name> </c id>

</ i n s t>
</ i n s t>

52 <i n s t>
<c id> <name>s</name> </c id>
<i n s t>
<c id> <name>a</name> </c id>
<i n s t>

57 <c id> <name>x</name> </c id>
</ i n s t>
<i n s t>
<c id> <name>y</name> </c id>

</ i n s t>
62 </ i n s t>

</ i n s t>
</defcase>

</step>
</mathlang>
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D.3 ASCII Tree

D.3.1 Untyped ASCII Tree

Document

‘-- Block

|-- Phrase

4 | ‘-- Dec

| |-- Id

| | ‘-- "0"

| ‘-- Cterm

|-- Phrase

9 | ‘-- Dec

| |-- Id

| | ‘-- "s"

| |-- Cterm

| ‘-- Cterm

14 |-- Phrase

| ‘-- Dec

| |-- Id

| | ‘-- "x"

| ‘-- Cterm

19 |-- Phrase

| ‘-- Dec

| |-- Id

| | ‘-- "y"

| ‘-- Cterm

24 |-- DefCase

| |-- Id

| | ‘-- "a"

| |-- Inst

| | ‘-- CId

29 | | ‘-- "x"

| |-- Inst

| | ‘-- CId

| | ‘-- "0"

| ‘-- Inst

34 | ‘-- CId

| ‘-- "x"

‘-- DefCase

|-- Id

| ‘-- "a"

39 |-- Inst

| ‘-- CId

| ‘-- "x"

|-- Inst

| |-- CId

44 | | ‘-- "s"

| ‘-- Inst

| ‘-- CId

| ‘-- "y"

‘-- Inst

49 |-- CId
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| ‘-- "s"

‘-- Inst

|-- CId

| ‘-- "a"

54 |-- Inst

| ‘-- CId

| ‘-- "x"

‘-- Inst

‘-- CId

59 ‘-- "y"

D.3.2 Typed ASCII Tree

Document

‘-- Block : Step

|-- Phrase : Step

| ‘-- Dec : Dec (() -> Term)

5 | |-- Id : () -> Term

| | ‘-- "0"

| ‘-- Cterm : Term

|-- Phrase : Step

| ‘-- Dec : Dec ((Term) -> Term)

10 | |-- Id : (Term) -> Term

| | ‘-- "s"

| |-- Cterm : Term

| ‘-- Cterm : Term

|-- Phrase : Step

15 | ‘-- Dec : Dec (() -> Term)

| |-- Id : () -> Term

| | ‘-- "x"

| ‘-- Cterm : Term

|-- Phrase : Step

20 | ‘-- Dec : Dec (() -> Term)

| |-- Id : () -> Term

| | ‘-- "y"

| ‘-- Cterm : Term

|-- DefCase : Def ((Term, Term) -> Term)

25 | |-- Id : (Term, Term) -> Term

| | ‘-- "a"

| |-- Inst : Term

| | ‘-- CId : () -> Term

| | ‘-- "x"

30 | |-- Inst : Term

| | ‘-- CId : () -> Term

| | ‘-- "0"

| ‘-- Inst : Term

| ‘-- CId : () -> Term

35 | ‘-- "x"

‘-- DefCase : Def ((Term, Term) -> Term)

|-- Id : (Term, Term) -> Term

| ‘-- "a"

|-- Inst : Term
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40 | ‘-- CId : () -> Term

| ‘-- "x"

|-- Inst : Term

| |-- CId : (Term) -> Term

| | ‘-- "s"

45 | ‘-- Inst : Term

| ‘-- CId : () -> Term

| ‘-- "y"

‘-- Inst : Term

|-- CId : (Term) -> Term

50 | ‘-- "s"

‘-- Inst : Term

|-- CId : (Term, Term) -> Term

| ‘-- "a"

|-- Inst : Term

55 | ‘-- CId : () -> Term

| ‘-- "x"

‘-- Inst : Term

‘-- CId : () -> Term

‘-- "y"

D.4 Graphical Tree

D.4.1 DOT File

digraph mathlang {

n57 [shape=record, label="{ Block | Step }"];

n4 [shape=record, label="{ Phrase | Step }"];

n3 [shape=record, label="{ Dec | Dec (() -\> Term) }"];

5 n1 [shape=record, label="{ Id | () -\> Term }"];

n0 [shape=record, label="{ \"0\" | (none) }"];

n1 -> { n0 };

n2 [shape=record, label="{ Cterm | Term }"];

10 n3 -> { n1 n2 };

n4 -> { n3 };

n10 [shape=record, label="{ Phrase | Step }"];

n9 [shape=record, label="{ Dec | Dec ((Term) -\> Term) }"];

15 n6 [shape=record, label="{ Id | (Term) -\> Term }"];

n5 [shape=record, label="{ \"s\" | (none) }"];

n6 -> { n5 };

n7 [shape=record, label="{ Cterm | Term }"];

20

n8 [shape=record, label="{ Cterm | Term }"];

n9 -> { n6 n7 n8 };

n10 -> { n9 };

25 n15 [shape=record, label="{ Phrase | Step }"];

n14 [shape=record, label="{ Dec | Dec (() -\> Term) }"];
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n12 [shape=record, label="{ Id | () -\> Term }"];

n11 [shape=record, label="{ \"x\" | (none) }"];

n12 -> { n11 };

30

n13 [shape=record, label="{ Cterm | Term }"];

n14 -> { n12 n13 };

n15 -> { n14 };

35 n20 [shape=record, label="{ Phrase | Step }"];

n19 [shape=record, label="{ Dec | Dec (() -\> Term) }"];

n17 [shape=record, label="{ Id | () -\> Term }"];

n16 [shape=record, label="{ \"y\" | (none) }"];

n17 -> { n16 };

40

n18 [shape=record, label="{ Cterm | Term }"];

n19 -> { n17 n18 };

n20 -> { n19 };

45 n32 [shape=record, label="{ DefCase | Def ((Term, Term) -\> Term) }"];

n22 [shape=record, label="{ Id | (Term, Term) -\> Term }"];

n21 [shape=record, label="{ \"a\" | (none) }"];

n22 -> { n21 };

50 n25 [shape=record, label="{ Inst | Term }"];

n24 [shape=record, label="{ CId | () -\> Term }"];

n23 [shape=record, label="{ \"x\" | (none) }"];

n24 -> { n23 };

n25 -> { n24 };

55

n28 [shape=record, label="{ Inst | Term }"];

n27 [shape=record, label="{ CId | () -\> Term }"];

n26 [shape=record, label="{ \"0\" | (none) }"];

n27 -> { n26 };

60 n28 -> { n27 };

n31 [shape=record, label="{ Inst | Term }"];

n30 [shape=record, label="{ CId | () -\> Term }"];

n29 [shape=record, label="{ \"x\" | (none) }"];

65 n30 -> { n29 };

n31 -> { n30 };

n32 -> { n22 n25 n28 n31 };

n56 [shape=record, label="{ DefCase | Def ((Term, Term) -\> Term) }"];

70 n34 [shape=record, label="{ Id | (Term, Term) -\> Term }"];

n33 [shape=record, label="{ \"a\" | (none) }"];

n34 -> { n33 };

n37 [shape=record, label="{ Inst | Term }"];

75 n36 [shape=record, label="{ CId | () -\> Term }"];

n35 [shape=record, label="{ \"x\" | (none) }"];

n36 -> { n35 };

n37 -> { n36 };

80 n43 [shape=record, label="{ Inst | Term }"];



57 D.4 Graphical Tree

n39 [shape=record, label="{ CId | (Term) -\> Term }"];

n38 [shape=record, label="{ \"s\" | (none) }"];

n39 -> { n38 };

85 n42 [shape=record, label="{ Inst | Term }"];

n41 [shape=record, label="{ CId | () -\> Term }"];

n40 [shape=record, label="{ \"y\" | (none) }"];

n41 -> { n40 };

n42 -> { n41 };

90 n43 -> { n39 n42 };

n55 [shape=record, label="{ Inst | Term }"];

n45 [shape=record, label="{ CId | (Term) -\> Term }"];

n44 [shape=record, label="{ \"s\" | (none) }"];

95 n45 -> { n44 };

n54 [shape=record, label="{ Inst | Term }"];

n47 [shape=record, label="{ CId | (Term, Term) -\> Term }"];

n46 [shape=record, label="{ \"a\" | (none) }"];

100 n47 -> { n46 };

n50 [shape=record, label="{ Inst | Term }"];

n49 [shape=record, label="{ CId | () -\> Term }"];

n48 [shape=record, label="{ \"x\" | (none) }"];

105 n49 -> { n48 };

n50 -> { n49 };

n53 [shape=record, label="{ Inst | Term }"];

n52 [shape=record, label="{ CId | () -\> Term }"];

110 n51 [shape=record, label="{ \"y\" | (none) }"];

n52 -> { n51 };

n53 -> { n52 };

n54 -> { n47 n50 n53 };

n55 -> { n45 n54 };

115 n56 -> { n34 n37 n43 n55 };

n57 -> { n4 n10 n15 n20 n32 n56 };

}
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D.4.2 PostScript Rendering
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